TOPICS
Search

Borel Hierarchy


The term Borel hierarchy is used to describe a collection of subsets of R defined inductively as follows: Level one consists of all open and closed subsets of R, and upon having defined levels 2,3,4,...,n-1, level n is obtained by taking countable unions and intersections of the previous level. In particular, level two of the hierarchy consists of the collections of all Fsigma and Gdelta sets while subsequent levels are described by way of the rather confusingly-named collection of sets of the form F_(sigmasigma), F_(sigmadelta), G_(deltasigma), G_(deltadelta), F_(sigmasigmasigma), etc.

The collection of sets across all levels of the Borel hierarchy is the Borel sigma-algebra. As such, the Borel hierarchy is fundamental to the study of measure theory.

More general notions of the Borel hierarchy (and thus of Borel sets, etc.) are introduced and studied as part of various areas of set theory, topology, and mathematical logic.


See also

Borel Set, Closed Set, Fsigma Set, Gdelta Set, Open Set

This entry contributed by Christopher Stover

Explore with Wolfram|Alpha

References

Royden, H. L. and Fitzpatrick, P. M. Real Analysis. Pearson, 2010.

Cite this as:

Stover, Christopher. "Borel Hierarchy." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/BorelHierarchy.html

Subject classifications