The entire function
where
is a polygamma function.
It satisfies
and
for all real .
Amazingly, it also has the integral
|
(3)
|
Furthermore, among all functions with the first two properties, minimizes the integral (3) (Beurling
1938, Montgomery 2001).
Explore with Wolfram|Alpha
References
Beurling, A. "Sur les intégrales de Fourier absolument convergentes et leur application à fonctionelle." Neuvième
congrès des mathématiciens scandinaves. Helsingfors, 1938.Montgomery,
H. L. "Harmonic Analysis as Found in Analytic Number Theory." In Twentieth
Century Harmonic Analysis--A Celebration. Proceedings of the NATO Advanced Study
Institute Held in Il Ciocco, July 2-15, 2000 (Ed. J. S. Byrnes).
Dordrecht, Netherlands: Kluwer, pp. 271-293, 2001.Referenced on Wolfram|Alpha
Beurling's Function
Cite this as:
Weisstein, Eric W. "Beurling's Function."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BeurlingsFunction.html
Subject classifications