TOPICS
Search

Archimedean Circle


An Archimedean circle is a circle defined in the arbelos in a natural way and congruent to Archimedes' circles, i.e., having radius

 rho=1/2r(1-r)

for an arbelos with outer semicircle of unit radius and parameter r.


See also

Arbelos, Archimedes' Circles, Bankoff Circle, Schoch Line

This entry contributed by Floor van Lamoen

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Bankoff, L. "Are the Twin Circles of Archimedes Really Twins?" Math. Mag. 47, 214-218, 1974.Dodge, C. W.; Schoch, T.; Woo, P. Y.; and Yiu, P. "Those Ubiquitous Archimedean Circles." Math. Mag. 72, 202-213, 1999.Okumura, H. and Watanabe, M. "The Archimedean Circles of Schoch and Woo." Forum Geom. 4, 27-34, 2004. http://forumgeom.fau.edu/FG2004volume4/FG200404index.html.Okumura, H. and Watanabe, M. "A Generalization of Power's Archimedean Circles." Forum Geom. 6, 103-105, 2006. http://forumgeom.fau.edu/FG2006volume6/FG200611index.html.Power, F. "Some More Archimedean Circles in the Arbelos." Forum Geom. 5, 133-134, 2005. http://forumgeom.fau.edu/FG2005volume5/FG200517index.html.Schoch, T. "A Dozen More Arbelos Twins." http://www.retas.de/thomas/arbelos/biola/.van Lamoen, F. "Archimedean Adventures." Forum Geom. 6, 77-96, 2006. http://forumgeom.fau.edu/FG2006volume6/FG200609index.html.

Referenced on Wolfram|Alpha

Archimedean Circle

Cite this as:

van Lamoen, Floor. "Archimedean Circle." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/ArchimedeanCircle.html

Subject classifications