A technique used by André (1887) to provide an elegant solution to the ballot problem (Hilton and Pederson 1991) and in study of Wiener processes (Doob 1953; Papoulis 1984, p. 505).
André's Reflection Method
See also
Ballot Problem, Wiener ProcessExplore with Wolfram|Alpha
References
André, D. "Solution directe du problème résolu par M. Bertrand." Comptes Rendus Acad. Sci. Paris 105, 436-437, 1887.Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, p. 22, 1974.Doob, J. L. Stochastic Processes. New York: Wiley, 1953.Hilton, P. and Pederson, J. "Catalan Numbers, Their Generalization, and Their Uses." Math. Intel. 13, 64-75, 1991.Papoulis, A. "The Reflection Principle and Its Applications." Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 505-510, 1984.Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 185, 1991.Referenced on Wolfram|Alpha
André's Reflection MethodCite this as:
Weisstein, Eric W. "André's Reflection Method." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AndresReflectionMethod.html