Search Results for ""
1 - 10 of 214 for ramanujan biographySearch Results
There are two awards that each go by the name "Ramanujan Prize": the SASTRA Ramanujan Prize and the ICTP Ramanujan Prize for Young Mathematicians from Developing Countries. ...
The nth Ramanujan prime is the smallest number R_n such that pi(x)-pi(x/2)>=n for all x>=R_n, where pi(x) is the prime counting function. In other words, there are at least n ...
In 1913, Ramanujan asked if the Diophantine equation of second order 2^n-7=x^2, sometimes called the Ramanujan-Nagell equation, has any solutions other than n=3, 4, 5, 7, and ...
The irrational constant R = e^(pisqrt(163)) (1) = 262537412640768743.9999999999992500... (2) (OEIS A060295), which is very close to an integer. Numbers such as the Ramanujan ...
Following Ramanujan (1913-1914), write product_(k=1,3,5,...)^infty(1+e^(-kpisqrt(n)))=2^(1/4)e^(-pisqrt(n)/24)G_n (1) ...
The Rogers-Ramanujan continued fraction is a generalized continued fraction defined by R(q)=(q^(1/5))/(1+q/(1+(q^2)/(1+(q^3)/(1+...)))) (1) (Rogers 1894, Ramanujan 1957, ...
The smallest nontrivial taxicab number, i.e., the smallest number representable in two ways as a sum of two cubes. It is given by 1729=1^3+12^3=9^3+10^3. The number derives ...
A sum which includes both the Jacobi triple product and the q-binomial theorem as special cases. Ramanujan's sum is ...
For |q|<1, the Rogers-Ramanujan identities are given by (Hardy 1999, pp. 13 and 90), sum_(n=0)^(infty)(q^(n^2))/((q)_n) = 1/(product_(n=1)^(infty)(1-q^(5n-4))(1-q^(5n-1))) ...
The two-argument Ramanujan function is defined by phi(a,n) = 1+2sum_(k=1)^(n)1/((ak)^3-ak) (1) = 1-1/a(H_(-1/a)+H_(1/a)+2H_n-H_(n-1/a)-H_(n+1/a)). (2) The one-argument ...
...