Sine

DOWNLOAD Mathematica Notebook EXPLORE THIS TOPIC IN the MathWorld Classroom Contribute to this entry
TrigonometrySin

The sine function sinx is one of the basic functions encountered in trigonometry (the others being the cosecant, cosine, cotangent, secant, and tangent). Let theta be an angle measured counterclockwise from the x-axis along an arc of the unit circle. Then sintheta is the vertical coordinate of the arc endpoint, as illustrated in the left figure above.

SineDiagram

The common schoolbook definition of the sine of an angle theta in a right triangle (which is equivalent to the definition just given) is as the ratio of the lengths of the side of the triangle opposite the angle and the hypotenuse, i.e.,

 sintheta=(opposite)/(hypotenuse).
(1)

A convenient mnemonic for remembering the definition of the sine, as well as the cosine and tangent, is SOHCAHTOA (sine equals opposite over hypotenuse, cosine equals adjacent over hypotenuse, tangent equals opposite over adjacent).

As a result of its definition, the sine function is periodic with period 2pi. By the Pythagorean theorem, sintheta also obeys the identity

 sin^2theta+cos^2theta=1.
(2)
SinReImAbs
Min Max
Re
Im Powered by webMathematica

The definition of the sine function can be extended to complex arguments z, illustrated above, using the definition

sinz=(e^(iz)-e^(-iz))/(2i)
(3)
=1/2i(e^(-iz)-e^(iz)),
(4)

where e is the base of the natural logarithm and i is the imaginary number. Sine is an entire function and is implemented in the Wolfram Language as Sin[z].

A related function known as the hyperbolic sine is similarly defined,

 sinhz=1/2(e^z-e^(-z)).
(5)

The sine function can be defined analytically by the infinite sum

 sinx=sum_(n=1)^infty((-1)^(n-1))/((2n-1)!)x^(2n-1).
(6)

It is also given by the imaginary part of the complex exponential

 sinx=I[e^(ix)].
(7)

The multiplicative inverse of the sine function is the cosecant, defined as

 cscx=1/(sinx).
(8)

The sine function is also given by the limit

 sin(z)=-pilim_(n->infty)1/(lnn)sum_(k=1)^infty(mu(k))/kln(n/k)frac((kz)/(2pi)),
(9)

where mu(k) is the Möbius function and frac(x) is the fractional part (M. Trott).

The derivative of sinx is

 d/(dx)sinx=cosx,
(10)

and its indefinite integral is

 intsinxdx=-cosx+C,
(11)

where C is a constant of integration.

Using the results from the exponential sum formulas

sum_(n=0)^(N)sin(nx)=I[sum_(n=0)^(N)e^(inx)]
(12)
=I[(e^(i(N+1)x)-1)/(e^(ix)-1)]
(13)
=I[(e^(i(N+1)x/2))/(e^(ix/2))(e^(i(N+1)x/2)-e^(-i(N+1)x/2))/(e^(ix/2)-e^(-ix/2))]
(14)
=(sin(1/2(N+1)x))/(sin(1/2x))I[e^(iNx/2)]
(15)
=(sin(1/2Nx)sin[1/2(N+1)x])/(sin(1/2x)).
(16)

Similarly,

sum_(n=0)^(infty)p^nsin(nx)=I[sum_(n=0)^(infty)p^ne^(inx)]
(17)
=I[(1-pe^(-ix))/(1-2pcosx+p^2)]
(18)
=(psinx)/(1-2pcosx+p^2).
(19)

The sum of sin^2(kx) can also be done in closed form,

 sum_(k=0)^Nsin^2(kx)=1/4{1+2N-cscxsin[x(1+2N)]}.
(20)

A related sum identity is given by

 sum_(k=1)^(n-1)sin((kpi)/n)=cot(pi/(2n))
(21)

(T. Drane, pers. comm., Apr. 19, 2006).

Product identities include

 pisproduct_(n=1)^infty(1-(s^2)/(n^2))=sin(pis),
(22)

which is more commonly written as an identity for the sinc function or in the form

 sinx=xproduct_(n=1)^infty(1-(x^2)/(n^2pi^2))
(23)

(Edwards 2001, pp. 18 and 47; Borwein et al. 2004, p. 5). Another product formula is

 product_(k=1)^(n-1)sin((kpi)/n)=2^(1-n)n
(24)

(T. Drane, pers. comm., Apr. 19, 2006).

The sine function obeys the identity

 sin(ntheta)=2costhetasin[(n-1)theta]-sin[(n-2)theta]
(25)

and the multiple-angle formula

 sin(nx)=sum_(k=0)^n(n; k)cos^kxsin^(n-k)xsin[1/2(n-k)pi],
(26)

where (n; k) is a binomial coefficient. It is related to tan(x/2) via

 sinx=(2tan(1/2x))/(1+tan^2(1/2x))
(27)

(Trott 2006, p. 39).

A curious identity is given by

 (sin(nalpha))/(sinalpha)=sum_(j=1)^nproduct_(k=1; k!=j)^n(sin(alpha+theta_j-theta_k))/(sin(theta_j-theta_k))
(28)

for all alpha and theta_j!=theta_k (Calogero 1999; Beylkin and Mohlenkamp 2002; Trott 2005, pp. 5-6).

Cvijović and Klinowski (1995) show that the sum

 S_nu(alpha)=sum_(k=0)^infty(sin(2k+1)alpha)/((2k+1)^nu)
(29)

has closed form for nu=2n+1,

 S_(2n+1)(alpha)=((-1)^n)/(4(2n)!)pi^(2n+1)E_(2n)(alpha/pi),
(30)

where E_n(x) is an Euler polynomial.

A continued fraction representation of sinx is

 sinx=x/(1+(x^2)/((2·3-x^2)+(2·3x^2)/((4·5-x^2)+(4·5x^2)/((6·7-x^2)+...))))
(31)

(Olds 1963, p. 138).

The value of sin(2pi/n) is irrational for all integers n>1 except 2, 4, and 12, for which sin(pi)=0, sin(pi/2)=1, and sin(pi/6)=1/2, respectively, a result that is essentially known as Niven's theorem.

The Fourier transform of sin(2pik_0x) is given by

F_x[sin(2pik_0x)](k)=int_(-infty)^inftye^(-2piikx)sin(2pik_0x)dx
(32)
=1/2i[delta(k+k_0)-delta(k-k_0)].
(33)

A definite integral involving sinx is given by

 int_0^inftysin(x^n)dx=Gamma(1+1/n)sin(pi/(2n))
(34)

for n>1 where Gamma(z) is the gamma function (R. Mabry, pers. comm., Dec. 15, 2005; T. Drane, pers. comm., Apr. 21, 2006).

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.