Inverse Sine

DOWNLOAD Mathematica Notebook ArcSin
ArcSinReImAbs
Min Max
Re
Im Powered by webMathematica

The inverse sine is the multivalued function sin^(-1)z (Zwillinger 1995, p. 465), also denoted arcsinz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 307; Jeffrey 2000, p. 124), that is the inverse function of the sine. The variants Arcsinz (e.g., Bronshtein and Semendyayev, 1997, p. 69) and Sin^(-1)z are sometimes used to refer to explicit principal values of the inverse sine, although this distinction is not always made (e.g,. Zwillinger 1995, p. 466). Worse yet, the notation arcsinz is sometimes used for the principal value, with Arcsinz being used for the multivalued function (Abramowitz and Stegun 1972, p. 80). Note that in the notation sin^(-1)z (commonly used in North America and in pocket calculators worldwide), sinz is the sine and the superscript -1 denotes the inverse function, not the multiplicative inverse.

The principal value of the inverse sine is implemented as ArcSin[z] in the Wolfram Language. In the GNU C library, it is implemented as asin(double x).

InverseSineBranchCut

The inverse sine is a multivalued function and hence requires a branch cut in the complex plane, which the Wolfram Language's convention places at (-infty,-1) and (1,infty). This follows from the definition of sin^(-1)z as

 sin^(-1)z=-iln(iz+sqrt(1-z^2)).
(1)

Special values include

sin^(-1)(-1)=-1/2pi
(2)
sin^(-1)0=0
(3)
sin^(-1)1=1/2pi.
(4)

The derivative of sin^(-1)z is

 d/(dz)sin^(-1)z=1/(sqrt(1-z^2))
(5)

and its indefinite integral is

 intsin^(-1)zdz=sqrt(1-z^2)+zsin^(-1)z+C.
(6)

The inverse sine satisfies

 sin^(-1)z=csc^(-1)(1/z)
(7)

for z!=0,

sin^(-1)z=-sin^(-1)(-z)
(8)
=cos^(-1)(-z)-1/2pi
(9)
=1/2pi-cos^(-1)z
(10)

for all complex z,

sin^(-1)x={-1/2pi+sin^(-1)(sqrt(1-x^2)) for x<0; 1/2pi-sin^(-1)(sqrt(1-x^2)) for x>0
(11)
={-1/2pi-cot^(-1)(x/(sqrt(1-x^2))) for x<0; 1/2pi-cot^(-1)(x/(sqrt(1-x^2))) for x>0
(12)
={-cos^(-1)(sqrt(1-x^2)) for -1<x<0; cos^(-1)(sqrt(1-x^2)) for 0<x<1
(13)
={-sec^(-1)(1/(sqrt(1-x^2))) for -1<x<0; sec^(-1)(1/(sqrt(1-x^2))) for 0<x<1,
(14)

and

sin^(-1)x=tan^(-1)(x/(sqrt(1-x^2)))
(15)
=cot^(-1)((sqrt(1-x^2))/x)
(16)

for -1<x<1, where equality at points where the denominators are 0 is understood to mean in the limit as x->+/-1 or x->0, respectively.

The Maclaurin series for the inverse sine with -1<=x<=1 is given by

sin^(-1)x=sum_(n=0)^(infty)((1/2)_n)/((2n+1)n!)x^(2n+1)
(17)
=x+1/6x^3+3/(40)x^5+5/(112)x^7+(35)/(1152)x^9+...
(18)

(OEIS A055786 and A002595), where (x)_n is a Pochhammer symbol.

The inverse sine can be given by the sum

 (sin^(-1)x)^2=1/2sum_(n=1)^infty((2x)^(2n))/(n^2(2n; n)),
(19)

where (2n; n) is a binomial coefficient (Borwein et al. 2004, p. 51; Borwein and Chamberland 2005; Bailey et al. 2007, pp. 15-16). Similarly,

[sin^(-1)(1/2x)]^4=3/2sum_(k=1)^(infty)[sum_(m=1)^(k-1)1/(m^2)](x^(2k))/(k^2(2k; k))
(20)
[sin^(-1)(1/2x)]^6=(45)/4sum_(k=1)^(infty)[sum_(m=1)^(k-1)1/(m^2)sum_(n=1)^(m-1)1/(n^2)](x^(2k))/(k^2(2k; k))
(21)
[sin^(-1)(1/2x)]^8=(315)/2sum_(k=1)^(infty)[sum_(m=1)^(k-1)1/(m^2)sum_(n=1)^(m-1)1/(n^2)sum_(p=1)^(n-1)1/(p^2)](x^(2k))/(k^2(2k; k))
(22)

(Bailey et al. 2007, pp. 16 and 282; Borwein and Chamberland 2007). Ramanujan gave the cases (sin^(-1)x)^n for n=1, 2, 3, and 4 (Berndt 1985, pp. 262-263), and the general cases are given in terms of multiple sums by Bailey et al. (2006, pp. 15-16 and 282) and Borwein and Chamberland (2007).

The inverse sine has continued fraction

 sin^(-1)z=(zsqrt(1-z^2))/(1-(1·2z^2)/(3-(1·2z^2)/(5-(3·4z^2)/(7-(3·4z^2)/(9-(5·6z^2)/(11-...))))))
(23)

(Wall 1948, p. 345).

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.