Root

DOWNLOAD Mathematica Notebook EXPLORE THIS TOPIC IN the MathWorld Classroom

The roots (sometimes also called "zeros") of an equation

 f(x)=0

are the values of x for which the equation is satisfied.

Roots x which belong to certain sets are usually preceded by a modifier to indicate such, e.g., x in Q is called a rational root, x in R is called a real root, and x in C is called a complex root.

The fundamental theorem of algebra states that every polynomial equation of degree n has exactly n complex roots, where some roots may have a multiplicity greater than 1 (in which case they are said to be degenerate). In the Wolfram Language, the expression Root[p(x), k] represents the kth root of the polynomial p(x)=0, where k=1, ..., n is an index indicating the root number in the Wolfram Language's ordering.

The similar concept of the "nth root" z=w^(1/n) of a complex number w is known as an nth root.

RootCurves

The roots of a complex function can be obtained by separating it into its real and imaginary plots and plotting these curves (which are related by the Cauchy-Riemann equations) separately. Their intersections give the complex roots of the original function. For example, the plot above shows the curves representing the real and imaginary parts of z^3-z^2-z-1=0, with the three roots indicated as black points.

Householder (1970) gives an algorithm for constructing root-finding algorithms with an arbitrary order of convergence. Special root-finding techniques can often be applied when the function in question is a polynomial.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.