Cauchy-Riemann Equations

DOWNLOAD Mathematica Notebook

Let

 f(x,y)=u(x,y)+iv(x,y),
(1)

where

 z=x+iy,
(2)

so

 dz=dx+idy.
(3)

The total derivative of f with respect to z is then

(df)/(dz)=(partialf)/(partialx)(partialx)/(partialz)+(partialf)/(partialy)(partialy)/(partialz)
(4)
=1/2((partialf)/(partialx)-i(partialf)/(partialy)).
(5)

In terms of u and v, (5) becomes

(df)/(dz)=1/2[((partialu)/(partialx)+i(partialv)/(partialx))-i((partialu)/(partialy)+i(partialv)/(partialy))]
(6)
=1/2[((partialu)/(partialx)+i(partialv)/(partialx))+(-i(partialu)/(partialy)+(partialv)/(partialy))].
(7)

Along the real, or x-axis, partialf/partialy=0, so

 (df)/(dz)=1/2((partialu)/(partialx)+i(partialv)/(partialx)).
(8)

Along the imaginary, or y-axis, partialf/partialx=0, so

 (df)/(dz)=1/2(-i(partialu)/(partialy)+(partialv)/(partialy)).
(9)

If f is complex differentiable, then the value of the derivative must be the same for a given dz, regardless of its orientation. Therefore, (8) must equal (9), which requires that

 (partialu)/(partialx)=(partialv)/(partialy)
(10)

and

 (partialv)/(partialx)=-(partialu)/(partialy).
(11)

These are known as the Cauchy-Riemann equations.

They lead to the conditions

(partial^2u)/(partialx^2)=-(partial^2u)/(partialy^2)
(12)
(partial^2v)/(partialx^2)=-(partial^2v)/(partialy^2).
(13)

The Cauchy-Riemann equations may be concisely written as

(df)/(dz^_)=1/2[(partialf)/(partialx)+i(partialf)/(partialy)]
(14)
=1/2[((partialu)/(partialx)+i(partialv)/(partialx))+i((partialu)/(partialy)+i(partialv)/(partialy))]
(15)
=1/2[((partialu)/(partialx)-(partialv)/(partialy))+i((partialu)/(partialy)+(partialv)/(partialx))]
(16)
=0,
(17)

where z^_ is the complex conjugate.

If z=re^(itheta), then the Cauchy-Riemann equations become

(partialu)/(partialr)=1/r(partialv)/(partialtheta)
(18)
1/r(partialu)/(partialtheta)=-(partialv)/(partialr)
(19)

(Abramowitz and Stegun 1972, p. 17).

If u and v satisfy the Cauchy-Riemann equations, they also satisfy Laplace's equation in two dimensions, since

 (partial^2u)/(partialx^2)+(partial^2u)/(partialy^2)=partial/(partialx)((partialv)/(partialy))+partial/(partialy)(-(partialv)/(partialx))=0
(20)
 (partial^2v)/(partialx^2)+(partial^2v)/(partialy^2)=partial/(partialx)(-(partialu)/(partialy))+partial/(partialy)((partialu)/(partialx))=0.
(21)

By picking an arbitrary f(z), solutions can be found which automatically satisfy the Cauchy-Riemann equations and Laplace's equation. This fact is used to use conformal mappings to find solutions to physical problems involving scalar potentials such as fluid flow and electrostatics.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.