Cube Root

DOWNLOAD Mathematica Notebook
CubeRootReal
Min Max
Powered by webMathematica
CubeRootReImAbs
Min Max
Re
Im Powered by webMathematica

Given a number z, the cube root of z, denoted RadicalBox[z, 3] or z^(1/3) (z to the 1/3 power), is a number a such that a^3=z. The cube root is therefore an nth root with n=3. Every real number has a unique real cube root, and every nonzero complex number has three distinct cube roots.

The schoolbook definition of the cube root of a negative number is (-x)^(1/3)=-(x^(1/3)). However, extension of the cube root into the complex plane gives a branch cut along the negative real axis for the principal value of the cube root as illustrated above. By convention, "the" (principal) cube root is therefore a complex number with positive imaginary part. As a result, the Wolfram Language and other symbolic algebra languages and programs that return results valid over the entire complex plane therefore return complex results for (-x)^(1/3). For example, in the Wolfram Language, ComplexExpand[(-1)^(1/3)] gives the result 1/2+isqrt(3)/2.

When considering a positive real number x, the Wolfram Language function CubeRoot[x], which is equivalent to Surd[x, 3], may be used to return the real cube root.

The cube root of a number a can be computed using Newton's method by iteratively applying

 x_n=1/3(a/(x_(n-1)^2)+2x_(n-1))

for some real starting value x_0.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.