TOPICS
Search

Search Results for ""


2941 - 2950 of 13135 for www.bong88.com login %...Search Results
The 5.1.2 fifth-order Diophantine equation A^5=B^5+C^5 (1) is a special case of Fermat's last theorem with n=5, and so has no solution. improving on the results on Lander et ...
The 6.1.2 equation A^6=B^6+C^6 (1) is a special case of Fermat's last theorem with n=6, and so has no solution. No 6.1.n solutions are known for n<=6 (Lander et al. 1967; Guy ...
The 7.1.2 equation A^7+B^7=C^7 (1) is a special case of Fermat's last theorem with n=7, and so has no solution. No solutions to the 7.1.3, 7.1.4, 7.1.5, 7.1.6 equations are ...
The 8.1.2 equation A^8+B^8=C^8 (1) is a special case of Fermat's last theorem with n=8, and so has no solution. No 8.1.3, 8.1.4, 8.1.5, 8.1.6, or 8.1.7 solutions are known. ...
The 9.1.2 equation A^9=B^9+C^9 (1) is a special case of Fermat's last theorem with n=9, and so has no solution. No 9.1.3, 9.1.4, 9.1.5, 9.1.6, 9.1.7, 9.1.8, or 9.1.9 ...
The 2-1 equation A^n+B^n=C^n (1) is a special case of Fermat's last theorem and so has no solutions for n>=3. Lander et al. (1967) give a table showing the smallest n for ...
A set S of positive integers is said to be Diophantine iff there exists a polynomial Q with integral coefficients in m>=1 indeterminates such that ...
A set of m distinct positive integers S={a_1,...,a_m} satisfies the Diophantus property D(n) of order n (a positive integer) if, for all i,j=1, ..., m with i!=j, ...
Diophantus's riddle is a poem that encodes a mathematical problem. In verse, it read as follows: 'Here lies Diophantus,' the wonder behold. Through art algebraic, the stone ...
The order-n dipole graph D_n is a multigraph consisting of two vertices and n multiple edges joining them. The dipole graph D_2 is a multigraph that can be considered to ...
1 ... 292|293|294|295|296|297|298 ... 1314 Previous Next

...