TOPICS
Search

Search Results for ""


12621 - 12630 of 13135 for www.bong88.com login %...Search Results
Wagner's theorem states that a graph is planar iff it does not contain K_5 or K_(3,3) as a graph minor.
A Wagstaff prime is a prime number of the form (2^p+1)/3 for p a prime number. The first few are given by p=3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, ...
A modification of the Eberhart's conjecture proposed by Wagstaff (1983) which proposes that if q_n is the nth prime such that M_(q_n) is a Mersenne prime, then ...
Let X_1, ..., X_N be a sequence of independent observations of a random variable X, and let the number of observations N itself be chosen at random. Then Wald's equation ...
A walk is a sequence v_0, e_1, v_1, ..., v_k of graph vertices v_i and graph edges e_i such that for 1<=i<=k, the edge e_i has endpoints v_(i-1) and v_i (West 2000, p. 20). ...
Let F_n be the nth Fibonacci number, and let (p|5) be a Legendre symbol so that e_p=(p/5)={1 for p=1,4 (mod 5); -1 for p=2,3 (mod 5). (1) A prime p is called a Wall-Sun-Sun ...
Two polygons are congruent by dissection iff they have the same area. In particular, any polygon is congruent by dissection to a square of the same area. Laczkovich (1988) ...
int_0^(pi/2)cos^nxdx = int_0^(pi/2)sin^nxdx (1) = (sqrt(pi)Gamma(1/2(n+1)))/(nGamma(1/2n)) (2) = ((n-1)!!)/(n!!){1/2pi for n=2, 4, ...; 1 for n=3, 5, ..., (3) where Gamma(n) ...
The Wallis formula follows from the infinite product representation of the sine sinx=xproduct_(n=1)^infty(1-(x^2)/(pi^2n^2)). (1) Taking x=pi/2 gives ...
A compact set W_infty with area mu(W_infty)=8/9(24)/(25)(48)/(49)...=pi/4 created by punching a square hole of length 1/3 in the center of a square. In each of the eight ...

...