TOPICS
Search

Search Results for ""


81 - 90 of 242 for water columnSearch Results
Let all of the functions f_n(z)=sum_(k=0)^inftya_k^((n))(z-z_0)^k (1) with n=0, 1, 2, ..., be regular at least for |z-z_0|<r, and let F(z) = sum_(n=0)^(infty)f_n(z) (2) = (3) ...
The Cayley-Menger determinant is a determinant that gives the volume of a simplex in j dimensions. If S is a j-simplex in R^n with vertices v_1,...,v_(j+1) and B=(beta_(ik)) ...
A generalization of the Fibonacci numbers defined by 1=G_1=G_2=...=G_(c-1) and the recurrence relation G_n=G_(n-1)+G_(n-c). (1) These are the sums of elements on successive ...
Given a 111×111 (0,1)-matrix, fill 11 spaces in each row in such a way that all columns also have 11 spaces filled. Furthermore, each pair of rows must have exactly one ...
A Room square (named after T. G. Room) of order n (for n even) is an arrangement in an (n-1)×(n-1) square matrix of n objects such that each cell is either empty or holds ...
A stochastic matrix, also called a probability matrix, probability transition matrix, transition matrix, substitution matrix, or Markov matrix, is matrix used to characterize ...
For two polynomials P_1(x)=a_mx^m+...+a_0 and P_2=b_nx^n+...+b_0 of degrees m and n, respectively, the Sylvester matrix is an (m+n)×(m+n) matrix formed by filling the matrix ...
An antimagic square is an n×n array of integers from 1 to n^2 such that each row, column, and main diagonal produces a different sum such that these sums form a sequence of ...
The nth central trinomial coefficient is defined as the coefficient of x^n in the expansion of (1+x+x^2)^n. It is therefore the middle column of the trinomial triangle, i.e., ...
The Epstein zeta function for a n×n matrix S of a positive definite real quadratic form and rho a complex variable with R[rho]>n/2 (where R[z] denotes the real part) is ...
1 ... 6|7|8|9|10|11|12 ... 25 Previous Next

...