Search Results for ""
491 - 500 of 1489 for vector productSearch Results
The divergence theorem, more commonly known especially in older literature as Gauss's theorem (e.g., Arfken 1985) and also known as the Gauss-Ostrogradsky theorem, is a ...
In an additive group G, the additive inverse of an element a is the element a^' such that a+a^'=a^'+a=0, where 0 is the additive identity of G. Usually, the additive inverse ...
A term of endearment used by algebraic topologists when talking about their favorite power tools such as Abelian groups, bundles, homology groups, homotopy groups, K-theory, ...
Given a vector space V, its projectivization P(V), sometimes written P(V-0), is the set of equivalence classes x∼lambdax for any lambda!=0 in V-0. For example, complex ...
A seminorm is a function on a vector space V, denoted ||v||, such that the following conditions hold for all v and w in V, and any scalar c. 1. ||v||>=0, 2. ||cv||=|c|||v||, ...
A normed vector space X=(X,||·||_X) is said to be uniformly convex if for sequences {x_n}={x_n}_(n=1)^infty, {y_n}={y_n}_(n=1)^infty, the assumptions ||x_n||_X<=1, ...
The area element for a surface with first fundamental form ds^2=Edu^2+2Fdudv+Gdv^2 is dA=sqrt(EG-F^2)du ^ dv, where du ^ dv is the wedge product.
For P, Q, R, and S polynomials in n variables [P·Q,R·S]=sum_(i_1,...,i_n>=0)A/(i_1!...i_n!), (1) where A=[R^((i_1,...,i_n))(D_1,...,D_n)Q(x_1,...,x_n) ...
Given a module M over a unit ring R, the set End_R(M) of its module endomorphisms is a ring with respect to the addition of maps, (f+g)(x)=f(x)+g(x), for all x in M, and the ...
A formula for the number of Young tableaux associated with a given Ferrers diagram. In each box, write the sum of one plus the number of boxes horizontally to the right and ...
...
View search results from all Wolfram sites (161781 matches)

