Search Results for ""
471 - 480 of 13135 for url Harmonic NumberSearch Results
The Jacobsthal numbers are the numbers obtained by the U_ns in the Lucas sequence with P=1 and Q=-2, corresponding to a=2 and b=-1. They and the Jacobsthal-Lucas numbers (the ...
The Fibonacci numbers are the sequence of numbers {F_n}_(n=1)^infty defined by the linear recurrence equation F_n=F_(n-1)+F_(n-2) (1) with F_1=F_2=1. As a result of the ...
An n-step Lucas sequence {L_k^((n))}_(k=1)^infty is defined by letting L_k^((n))=-1 for k<0, L_0^((n))=n, and other terms according to the linear recurrence equation ...
An integer N which is a product of distinct primes and which satisfies 1/N+sum_(p|N)1/p=1 (Butske et al. 1999). The first few are 2, 6, 42, 1806, 47058, ... (OEIS A054377). ...
Catalan (1876, 1891) noted that the sequence of Mersenne numbers 2^2-1=3, 2^3-1=7, and 2^7-1=127, and (OEIS A007013) were all prime (Dickson 2005, p. 22). Therefore, the ...
An irreducible algebraic integer which has the property that, if it divides the product of two algebraic integers, then it divides at least one of the factors. 1 and -1 are ...
product_(k=1)^(infty)(1-x^k) = sum_(k=-infty)^(infty)(-1)^kx^(k(3k+1)/2) (1) = 1+sum_(k=1)^(infty)(-1)^k[x^(k(3k-1)/2)+x^(k(3k+1)/2)] (2) = (x)_infty (3) = ...
Pick two real numbers x and y at random in (0,1) with a uniform distribution. What is the probability P_(even) that [x/y], where [r] denotes the nearest integer function, is ...
An integer n>1 is said to be highly cototient if the equation x-phi(x)=n has more solutions than the equations x-phi(x)=k for all 1<k<n, where phi is the totient function. ...
The set of numbers generated by excluding the sums of two or more consecutive earlier members is called the prime numbers of measurement, or sometimes the segmented numbers. ...
...
View search results from all Wolfram sites (78797 matches)

