Search Results for ""
5561 - 5570 of 13135 for triangle geometrySearch Results
The derivative (deltaL)/(deltaq)=(partialL)/(partialq)-d/(dt)((partialL)/(partialq^.)) appearing in the Euler-Lagrange differential equation.
Let U(P,Q) and V(P,Q) be Lucas sequences generated by P and Q, and define D=P^2-4Q. (1) Then {U_((n-(D/n))/2)=0 (mod n) when (Q/n)=1; V_((n-(D/n))/2)=D (mod n) when (Q/n)=-1, ...
The partial differential equation u_(xy)+(N(u_x+u_y))/(x+y)=0.
Euler integration was defined by Schanuel and subsequently explored by Rota, Chen, and Klain. The Euler integral of a function f:R->R (assumed to be piecewise-constant with ...
A special case of the Artin L-function for the polynomial x^2+1. It is given by L(s)=product_(p odd prime)1/(1-chi^-(p)p^(-s)), (1) where chi^-(p) = {1 for p=1 (mod 4); -1 ...
An Euler pseudoprime to the base b is a composite number n which satisfies b^((n-1)/2)=+/-1 (mod n). The first few base-2 Euler pseudoprimes are 341, 561, 1105, 1729, 1905, ...
The number of alternating permutations for n elements is sometimes called an Euler zigzag number. Denote the number of alternating permutations on n elements for which the ...
Legendre and Whittaker and Watson's (1990) term for the beta integral int_0^1x^p(1-x)^qdx, whose solution is the beta function B(p+1,q+1).
For R[n]>-1 and R[z]>0, Pi(z,n) = n^zint_0^1(1-x)^nx^(z-1)dx (1) = (n!)/((z)_(n+1))n^z (2) = B(z,n+1), (3) where (z)_n is the Pochhammer symbol and B(p,q) is the beta ...
Define g(k) as the quantity appearing in Waring's problem, then Euler conjectured that g(k)=2^k+|_(3/2)^k_|-2, where |_x_| is the floor function.
...
View search results from all Wolfram sites (20519 matches)

