Search Results for ""
3331 - 3340 of 13135 for triangle geometrySearch Results
Let a graph G have exactly 2n-3 graph edges, where n is the number of graph vertices in G. Then G is "generically" rigid in R^2 iff e^'<=2n^'-3 for every subgraph of G having ...
A point at the intersection of two or more grid lines in a point lattice.
D^*Dpsi=del ^*del psi+1/4Rpsi, where D is the Dirac operator D:Gamma(S^+)->Gamma(S^-), del is the covariant derivative on spinors, and R is the scalar curvature.
Second and higher derivatives of the metric tensor g_(ab) need not be continuous across a surface of discontinuity, but g_(ab) and g_(ab,c) must be continuous across it.
D^*Dpsi=del ^*del psi+1/4Rpsi-1/2F_L^+(psi), where D is the Dirac operator D:Gamma(W^+)->Gamma(W^-), del is the covariant derivative on spinors, R is the scalar curvature, ...
The Lie derivative of tensor T_(ab) with respect to the vector field X is defined by L_XT_(ab)=lim_(deltax->0)(T_(ab)^'(x^')-T_(ab)(x))/(deltax). (1) Explicitly, it is given ...
Limacon Evolute The catacaustic of a circle for a radiant point is the limaçon evolute. It has parametric equations x = (a[4a^2+4b^2+9abcost-abcos(3t)])/(4(2a^2+b^2+3abcost)) ...
The surface of revolution generated by the external catenary between a fixed point a and its conjugate on the envelope of the catenary through the fixed point is equal in ...
Also known as the first fundamental form, ds^2=g_(ab)dx^adx^b. In the principal axis frame for three dimensions, ds^2=g_(11)(dx^1)^2+g_(22)(dx^2)^2+g_(33)(dx^3)^2. At ...
The negative pedal curve of a line specified parametrically by x = at (1) y = 0 (2) is given by x_n = 2at-x (3) y_n = ((x-at)^2)/y, (4) which is a parabola.
...
View search results from all Wolfram sites (20519 matches)

