TOPICS
Search

Search Results for ""


12241 - 12250 of 13135 for triangle geometrySearch Results
The inverse hyperbolic cotangent coth^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic cotangent (Harris and Stocker 1998, p. 267), ...
The inverse hyperbolic functions, sometimes also called the area hyperbolic functions (Spanier and Oldham 1987, p. 263) are the multivalued function that are the inverse ...
The inverse hyperbolic secant sech^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic secant (Harris and Stocker 1998, p. 271) and ...
The inverse hyperbolic sine sinh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic sine (Harris and Stocker 1998, p. 264) is the ...
The inverse hyperbolic tangent tanh^(-1)z (Zwillinger 1995, p. 481; Beyer 1987, p. 181), sometimes called the area hyperbolic tangent (Harris and Stocker 1998, p. 267), is ...
The inverse secant sec^(-1)z (Zwillinger 1995, p. 465), also denoted arcsecz (Abramowitz and Stegun 1972, p. 79; Harris and Stocker 1998, p. 315; Jeffrey 2000, p. 124), is ...
An irreducible representation of a group is a group representation that has no nontrivial invariant subspaces. For example, the orthogonal group O(n) has an irreducible ...
The Jacobi method is a method of solving a matrix equation on a matrix that has no zeros along its main diagonal (Bronshtein and Semendyayev 1997, p. 892). Each diagonal ...
The Jacobi polynomials, also known as hypergeometric polynomials, occur in the study of rotation groups and in the solution to the equations of motion of the symmetric top. ...
Jacobi's imaginary transformations relate elliptic functions to other elliptic functions of the same type but having different arguments. In the case of the Jacobi elliptic ...

...