Search Results for ""
11241 - 11250 of 13135 for triangle geometrySearch Results
The problem of finding the connection between a continuous function f on the boundary partialR of a region R with a harmonic function taking on the value f on partialR. In ...
Given an arithmetic progression of terms an+b, for n=1, 2, ..., the series contains an infinite number of primes if a and b are relatively prime, i.e., (a,b)=1. This result ...
If a is an arbitrary integer relatively prime to n and g is a primitive root of n, then there exists among the numbers 0, 1, 2, ..., phi(n)-1, where phi(n) is the totient ...
The distance polynomial is the characteristic polynomial of the graph distance matrix. The following table summarizes distance polynomials for some common classes of graphs. ...
A series which is not convergent. Series may diverge by marching off to infinity or by oscillating. Divergent series have some curious properties. For example, rearranging ...
The divided difference f[x_0,x_1,x_2,...,x_n], sometimes also denoted [x_0,x_1,x_2,...,x_n] (Abramowitz and Stegun 1972), on n+1 points x_0, x_1, ..., x_n of a function f(x) ...
In order to find integers x and y such that x^2=y^2 (mod n) (1) (a modified form of Fermat's factorization method), in which case there is a 50% chance that GCD(n,x-y) is a ...
_3F_2[n,-x,-y; x+n+1,y+n+1] =Gamma(x+n+1)Gamma(y+n+1)Gamma(1/2n+1)Gamma(x+y+1/2n+1) ×Gamma(n+1)Gamma(x+y+n+1)Gamma(x+1/2n+1)Gamma(y+1/2n+1), (1) where _3F_2(a,b,c;d,e;z) is a ...
The term domain has (at least) three different meanings in mathematics. The term domain is most commonly used to describe the set of values D for which a function (map, ...
For a graph G and a subset S of the vertex set V(G), denote by N_G[S] the set of vertices in G which are in S or adjacent to a vertex in S. If N_G[S]=V(G), then S is said to ...
...
View search results from all Wolfram sites (20519 matches)

