TOPICS
Search

Search Results for ""


4371 - 4380 of 13135 for sun rotationSearch Results
If the knot K is the boundary K=f(S^1) of a singular disk f:D->S^3 which has the property that each self-intersecting component is an arc A subset f(D^2) for which f^(-1)(A) ...
If the Taniyama-Shimura conjecture holds for all semistable elliptic curves, then Fermat's last theorem is true. Before its proof by Ribet in 1986, the theorem had been ...
S_n(z) = zj_n(z)=sqrt((piz)/2)J_(n+1/2)(z) (1) C_n(z) = -zn_n(z)=-sqrt((piz)/2)N_(n+1/2)(z), (2) where j_n(z) and n_n(z) are spherical Bessel functions of the first and ...
P(Z)=Z/(sigma^2)exp(-(Z^2+|V|^2)/(2sigma^2))I_0((Z|V|)/(sigma^2)), where I_0(z) is a modified Bessel function of the first kind and Z>0. For a derivation, see Papoulis ...
The Riemann-Lebesgue Lemma, sometimes also called Mercer's theorem, states that lim_(n->infty)int_a^bK(lambda,z)Csin(nz)dz=0 (1) for arbitrarily large C and "nice" ...
If two algebraic plane curves with only ordinary singular points and cusps are related such that the coordinates of a point on either are rational functions of a ...
The solution u(x,y)=int_0^xdxiint_1^yR(xi,eta;x,y)f(xi,eta)deta, where R(x,y;xieta) is the Riemann function of the linear Goursat problem with characteristics phi=psi=0 ...
Let z_0 be a point in a simply connected region R!=C, where C is the complex plane. Then there is a unique analytic function w=f(z) mapping R one-to-one onto the disk |w|<1 ...
The method for solving the Goursat problem and Cauchy problem for linear hyperbolic partial differential equations using a Riemann function.
Let f:D(z_0,r)\{z_0}->C be analytic and bounded on a punctured open disk D(z_0,r), then lim_(z->z_0)f(z) exists, and the function defined by f^~:D(z_0,r)->C f^~(z)={f(z) for ...
1 ... 435|436|437|438|439|440|441 ... 1314 Previous Next

...