Search Results for ""
251 - 260 of 1924 for sum over paths FeynmanSearch Results

The second theorem of Mertens states that the asymptotic form of the harmonic series for the sum of reciprocal primes is given by sum_(p<=x)1/p=lnlnx+B_1+o(1), where p is a ...
A Schauder basis for a Banach space X is a sequence {x_n} in X with the property that every x in X has a unique representation of the form x=sum_(n=1)^(infty)alpha_nx_n for ...
The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where ...
Start with an integer n, known as the digitaddition generator. Add the sum of the digitaddition generator's digits to obtain the digitaddition n^'. A number can have more ...
The polynomials G_n(x;a,b) given by the associated Sheffer sequence with f(t)=e^(at)(e^(bt)-1), (1) where b!=0. The inverse function (and therefore generating function) ...
Expanding the Riemann zeta function about z=1 gives zeta(z)=1/(z-1)+sum_(n=0)^infty((-1)^n)/(n!)gamma_n(z-1)^n (1) (Havil 2003, p. 118), where the constants ...
The Mertens constant B_1, also known as the Hadamard-de la Vallee-Poussin constant, prime reciprocal constant (Bach and Shallit 1996, p. 234), or Kronecker's constant ...
The prime zeta function P(s)=sum_(p)1/(p^s), (1) where the sum is taken over primes is a generalization of the Riemann zeta function zeta(s)=sum_(k=1)^infty1/(k^s), (2) where ...
A set n distinct numbers taken from the interval [1,n^2] form a magic series if their sum is the nth magic constant M_n=1/2n(n^2+1) (Kraitchik 1942, p. 143). If the sum of ...
Given a Taylor series f(z)=sum_(n=0)^inftyC_nz^n=sum_(n=0)^inftyC_nr^ne^(intheta), (1) where the complex number z has been written in the polar form z=re^(itheta), examine ...

...