Search Results for ""
21 - 30 of 1924 for sum over paths FeynmanSearch Results
The direct sum of modules A and B is the module A direct sum B={a direct sum b|a in A,b in B}, (1) where all algebraic operations are defined componentwise. In particular, ...
The sum rule for differentiation states d/(dx)[f(x)+g(x)]=f^'(x)+g^'(x), (1) where d/dx denotes a derivative and f^'(x) and g^'(x) are the derivatives of f(x) and g(x), ...
The connected sum M_1#M_2 of n-manifolds M_1 and M_2 is formed by deleting the interiors of n-balls B_i^n in M_i^n and attaching the resulting punctured manifolds M_i-B^._i ...
Given relatively prime integers p and q (i.e., (p,q)=1), the Dedekind sum is defined by s(p,q)=sum_(i=1)^q((i/q))(((pi)/q)), (1) where ((x))={x-|_x_|-1/2 x not in Z; 0 x in ...
Cubic lattice sums include the following: b_2(2s) = sum^'_(i,j=-infty)^infty((-1)^(i+j))/((i^2+j^2)^s) (1) b_3(2s) = ...
The graph sum of graphs G and H is the graph with adjacency matrix given by the sum of adjacency matrices of G and H. A graph sum is defined when the orders of G and H are ...
Given an amicable pair (m,n), the quantity sigma(m) = sigma(n) (1) = =s(m)+s(n) (2) = m+n (3) is called the pair sum, where sigma(n) is the divisor function and s(n) is the ...
A Gaussian sum is a sum of the form S(p,q)=sum_(r=0)^(q-1)e^(-piir^2p/q), (1) where p and q are relatively prime integers. The symbol phi is sometimes used instead of S. ...
Kloosterman's sum is defined by S(u,v,n)=sum_(h)exp[(2pii(uh+vh^_))/n], (1) where h runs through a complete set of residues relatively prime to n and h^_ is defined by hh^_=1 ...
The sum c_q(m)=sum_(h^*(q))e^(2piihm/q), (1) where h runs through the residues relatively prime to q, which is important in the representation of numbers by the sums of ...
...
View search results from all Wolfram sites (33496 matches)

