TOPICS
Search

Search Results for ""


1361 - 1370 of 1924 for sum over paths FeynmanSearch Results
There are at least three theorems known as Jensen's theorem. The first states that, for a fixed vector v=(v_1,...,v_m), the function |v|_p=(sum_(i=1)^m|v_i|^p)^(1/p) is a ...
The partial differential equation 1/(c^2)(partial^2psi)/(partialt^2)=(partial^2psi)/(partialx^2)-mu^2psi (1) that arises in mathematical physics. The quasilinear Klein-Gordon ...
Let alpha(x) be a step function with the jump j(x)=(N; x)p^xq^(N-x) (1) at x=0, 1, ..., N, where p>0,q>0, and p+q=1. Then the Krawtchouk polynomial is defined by ...
Given a series of positive terms u_i and a sequence of finite positive constants a_i, let rho=lim_(n->infty)(a_n(u_n)/(u_(n+1))-a_(n+1)). 1. If rho>0, the series converges. ...
Generalizing from a straight line (i.e., first degree polynomial) to a kth degree polynomial y=a_0+a_1x+...+a_kx^k, (1) the residual is given by ...
Lehmer (1938) showed that every positive irrational number x has a unique infinite continued cotangent representation of the form x=cot[sum_(k=0)^infty(-1)^kcot^(-1)b_k], (1) ...
The Lehmer cotangent expansion for which the convergence is slowest occurs when the inequality in the recurrence equation b_k>=b_(k-1)^2+b_(k-1)+1. (1) for ...
Let L denote the partition lattice of the set {1,2,...,n}. The maximum element of L is M={{1,2,...,n}} (1) and the minimum element is m={{1},{2},...,{n}}. (2) Let Z_n denote ...
Let t(m) denote the set of the phi(m) numbers less than and relatively prime to m, where phi(n) is the totient function. Then if S_m=sum_(t(m))1/t, (1) then {S_m=0 (mod m^2) ...
n vectors X_1, X_2, ..., X_n are linearly dependent iff there exist scalars c_1, c_2, ..., c_n, not all zero, such that sum_(i=1)^nc_iX_i=0. (1) If no such scalars exist, ...
1 ... 134|135|136|137|138|139|140 ... 193 Previous Next

...