Search Results for ""
1071 - 1080 of 1924 for sum over paths FeynmanSearch Results
Polynomials b_n(x) which form a Sheffer sequence with g(t) = t/(e^t-1) (1) f(t) = e^t-1, (2) giving generating function sum_(k=0)^infty(b_k(x))/(k!)t^k=(t(t+1)^x)/(ln(1+t)). ...
The entire function B(z) = [(sin(piz))/pi]^2[2/z+sum_(n=0)^(infty)1/((z-n)^2)-sum_(n=1)^(infty)1/((z+n)^2)] (1) = 1-(2sin^2(piz))/(pi^2z^2)[z^2psi_1(z)-z-1], (2) where ...
The "binary" Champernowne constant is obtained by concatenating the binary representations of the integers C_2 = 0.(1)(10)(11)(100)(101)(110)(111)..._2 (1) = ...
There are several related series that are known as the binomial series. The most general is (x+a)^nu=sum_(k=0)^infty(nu; k)x^ka^(nu-k), (1) where (nu; k) is a binomial ...
The binomial transform takes the sequence a_0, a_1, a_2, ... to the sequence b_0, b_1, b_2, ... via the transformation b_n=sum_(k=0)^n(-1)^(n-k)(n; k)a_k. The inverse ...
Let {a_i}_(i=1)^n be a set of positive numbers. Then sum_(i=1)^n(a_1a_2...a_i)^(1/i)<=esum_(i=1)^na_i (which is given incorrectly in Gradshteyn and Ryzhik 2000). Here, the ...
If Y_i have normal independent distributions with mean 0 and variance 1, then chi^2=sum_(i=1)^rY_i^2 (1) is distributed as chi^2 with r degrees of freedom. This makes a chi^2 ...
The complementary Bell numbers, also called the Uppuluri-Carpenter numbers, B^~_n=sum_(k=0)^n(-1)^kS(n,k) (1) where S(n,k) is a Stirling number of the second kind, are ...
A series is said to be conditionally convergent iff it is convergent, the series of its positive terms diverges to positive infinity, and the series of its negative terms ...
The convex hull of a set of points S in n dimensions is the intersection of all convex sets containing S. For N points p_1, ..., p_N, the convex hull C is then given by the ...
...
View search results from all Wolfram sites (33496 matches)

