Search Results for ""
81 - 90 of 375 for riemannSearch Results

The Ricci curvature tensor, also simply known as the Ricci tensor (Parker and Christensen 1994), is defined by R_(mukappa)=R^lambda_(mulambdakappa), where ...
Consider the inequality sigma(n)<e^gammanlnlnn for integer n>1, where sigma(n) is the divisor function and gamma is the Euler-Mascheroni constant. This holds for 7, 11, 13, ...
Analytic number theory is the branch of number theory which uses real and complex analysis to investigate various properties of integers and prime numbers. Examples of topics ...
A complex line bundle is a vector bundle pi:E->M whose fibers pi^(-1)(m) are a copy of C. pi is a holomorphic line bundle if it is a holomorphic map between complex manifolds ...
The Dirichlet eta function is the function eta(s) defined by eta(s) = sum_(k=1)^(infty)((-1)^(k-1))/(k^s) (1) = (1-2^(1-s))zeta(s), (2) where zeta(s) is the Riemann zeta ...
The prime zeta function P(s)=sum_(p)1/(p^s), (1) where the sum is taken over primes is a generalization of the Riemann zeta function zeta(s)=sum_(k=1)^infty1/(k^s), (2) where ...
An algebraic manifold is another name for a smooth algebraic variety. It can be covered by coordinate charts so that the transition functions are given by rational functions. ...
A theorem in the theory of univalent conformal mappings of families of domains on a Riemann surface, containing an inequality for the coefficients of the mapping functions, ...
A complex manifold for which the exterior derivative of the fundamental form Omega associated with the given Hermitian metric vanishes, so dOmega=0. In other words, it is a ...
Knuth's series is given by S = sum_(k=1)^(infty)((k^k)/(k!e^k)-1/(sqrt(2pik))) (1) = -2/3-1/(sqrt(2pi))zeta(1/2) (2) = -0.08406950872765599646... (3) (OEIS A096616), where ...

...