Search Results for ""
10321 - 10330 of 13135 for random number generatorSearch Results
Let (q_1,...,q_n,p_1,...,p_n) be any functions of two variables (u,v). Then the expression ...
Given a Taylor series f(x)=f(x_0)+(x-x_0)f^'(x_0)+((x-x_0)^2)/(2!)f^('')(x_0)+... +((x-x_0)^n)/(n!)f^((n))(x_0)+R_n, (1) the error R_n after n terms is given by ...
Let lambda be the longitude, lambda_0 the reference longitude, phi the latitude, phi_0 the reference latitude, and phi_1 and phi_2 the standard parallels. Then the ...
An equation proposed by Lambert (1758) and studied by Euler in 1779. x^alpha-x^beta=(alpha-beta)vx^(alpha+beta). (1) When alpha->beta, the equation becomes lnx=vx^beta, (2) ...
The ordinary differential equation (1) (Byerly 1959, p. 255). The solution is denoted E_m^p(x) and is known as an ellipsoidal harmonic of the first kind, or Lamé function. ...
An approximation for the gamma function Gamma(z+1) with R[z]>0 is given by Gamma(z+1)=sqrt(2pi)(z+sigma+1/2)^(z+1/2)e^(-(z+sigma+1/2))sum_(k=0)^inftyg_kH_k(z), (1) where ...
The Lehmer-Mahler is the following integral representation for the Legendre polynomial P_n(x): P_n(costheta) = 1/piint_0^pi(costheta+isinthetacosphi)^ndphi (1) = ...
In conical coordinates, Laplace's equation can be written ...
The spherical harmonics form a complete orthogonal system, so an arbitrary real function f(theta,phi) can be expanded in terms of complex spherical harmonics by ...
In toroidal coordinates, Laplace's equation becomes (1) Attempt separation of variables by plugging in the trial solution f(u,v,phi)=sqrt(coshu-cosv)U(u)V(v)Psi(psi), (2) ...
...
View search results from all Wolfram sites (185340 matches)

