Search Results for ""
141 - 150 of 214 for ramanujan biographySearch Results
The q-analog of the binomial theorem (1-z)^n=1-nz+(n(n-1))/(1·2)z^2-(n(n-1)(n-2))/(1·2·3)z^3+... (1) is given by (1-z/(q^n))(1-z/(q^(n-1)))...(1-z/q) ...
A q-analog of Gauss's theorem due to Jacobi and Heine, _2phi_1(a,b;c;q,c/(ab))=((c/a;q)_infty(c/b;q)_infty)/((c;q)_infty(c/(ab);q)_infty) (1) for |c/(ab)|<1 (Gordon and ...
A q-analog of the Saalschütz theorem due to Jackson is given by where _3phi_2 is the q-hypergeometric function (Koepf 1998, p. 40; Schilling and Warnaar 1999).
An almost integer is a number that is very close to an integer. Near-solutions to Fermat's last theorem provide a number of high-profile almost integers. In the season 7, ...
The number of representations of n by k squares, allowing zeros and distinguishing signs and order, is denoted r_k(n). The special case k=2 corresponding to two squares is ...
The constant pi, denoted pi, is a real number defined as the ratio of a circle's circumference C to its diameter d=2r, pi = C/d (1) = C/(2r) (2) pi has decimal expansion ...
erf(z) is the "error function" encountered in integrating the normal distribution (which is a normalized form of the Gaussian function). It is an entire function defined by ...
The logarithmic integral (in the "American" convention; Abramowitz and Stegun 1972; Edwards 2001, p. 26), is defined for real x as li(x) = {int_0^x(dt)/(lnt) for 0<x<1; ...
A (k,l)-multigrade equation is a Diophantine equation of the form sum_(i=1)^ln_i^j=sum_(i=1)^lm_i^j (1) for j=1, ..., k, where m and n are l-vectors. Multigrade identities ...
If Li_2(x) denotes the usual dilogarithm, then there are two variants that are normalized slightly differently, both called the Rogers L-function (Rogers 1907). Bytsko (1999) ...
...