Search Results for ""
11 - 20 of 214 for ramanujan biographySearch Results
Ramanujan developed a number of interesting closed-form expressions for generalized continued fractions. These include the almost integers ...
Suppose that in some neighborhood of x=0, F(x)=sum_(k=0)^infty(phi(k)(-x)^k)/(k!) (1) for some function (say analytic or integrable) phi(k). Then ...
Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It ...
A hypergeometric identity discovered by Ramanujan around 1910. From Hardy (1999, pp. 13 and 102-103), (1) where a^((n))=a(a+1)...(a+n-1) (2) is the rising factorial (a.k.a. ...
N. Nielsen (1909) and Ramanujan (Berndt 1985) considered the integrals a_k=int_1^2((lnx)^k)/(x-1)dx. (1) They found the values for k=1 and 2. The general constants for k>3 ...
Oloa (2010, pers. comm., Jan. 20, 2010) has considered the following integrals containing nested radicals of 1/2 plus terms in theta^2 and ln^2costheta: R_n^- = (1) R_n^+ = ...
5((x^5)_infty^5)/((x)_infty^6)=sum_(m=0)^inftyP(5m+4)x^m, where (x)_infty is a q-Pochhammer symbol and P(n) is the partition function P.
int_0^inftycos(2zt)sech(pit)dt=1/2sechz for |I[z]|<pi/2. A related integral is int_0^inftycosh(2zt)sech(pit)dt=1/2secz for |R[z]|<pi/2.
int_(-infty)^infty(J_(mu+xi)(x))/(x^(mu+xi))(J_(nu-xi)(y))/(y^(nu-xi))e^(itxi)dxi =[(2cos(1/2t))/(x^2e^(-it/2)+y^2e^(it/2))]^((mu+nu)/2) ...
The sum c_q(m)=sum_(h^*(q))e^(2piihm/q), (1) where h runs through the residues relatively prime to q, which is important in the representation of numbers by the sums of ...
...
View search results from all Wolfram sites (2077 matches)

