TOPICS
Search

Search Results for ""


161 - 170 of 1229 for polynomialSearch Results
Let l(x) be an nth degree polynomial with zeros at x_1, ..., x_n. Then the fundamental Hermite interpolating polynomials of the first and second kinds are defined by ...
An algebraically soluble equation of odd prime degree which is irreducible in the natural field possesses either 1. Only a single real root, or 2. All real roots.
This is proven in Rademacher and Toeplitz (1957).
The hypergeometric orthogonal polynomials defined by P_n^((lambda))(x;phi)=((2lambda)_n)/(n!)e^(inphi)_2F_1(-n,lambda+ix;2lambda;1-e^(-2iphi)), (1) where (x)_n is the ...
Orthogonal polynomials associated with weighting function w(x) = pi^(-1/2)kexp(-k^2ln^2x) (1) = pi^(-1/2)kx^(-k^2lnx) (2) for x in (0,infty) and k>0. Defining ...
A function, continuous in a finite closed interval, can be approximated with a preassigned accuracy by polynomials. A function of a real variable which is continuous and has ...
Polynomials m_k(x;beta,c) which form the Sheffer sequence for g(t) = ((1-c)/(1-ce^t))^beta (1) f(t) = (1-e^t)/(c^(-1)-e^t) (2) and have generating function ...
Polynomials M_k(x) which form the associated Sheffer sequence for f(t)=(e^t-1)/(e^t+1) (1) and have the generating function sum_(k=0)^infty(M_k(x))/(k!)t^k=((1+t)/(1-t))^x. ...
The Poisson-Charlier polynomials c_k(x;a) form a Sheffer sequence with g(t) = e^(a(e^t-1)) (1) f(t) = a(e^t-1), (2) giving the generating function ...
Let n be an integer such that n>=lambda_1, where lambda=(lambda_1,lambda_2,...) is a partition of n=|lambda| if lambda_1>=lambda_2>=...>=0, where lambda_i are a sequence of ...
1 ... 14|15|16|17|18|19|20 ... 123 Previous Next

...