Search Results for ""
181 - 190 of 314 for polygonalSearch Results
A cubic triangular number is a positive integer that is simultaneously cubic and triangular. Such a number must therefore satisfy T_n=m^3 for some positive integers n and m, ...
A number which is simultaneously a heptagonal number Hep_n and hexagonal number Hex_m. Such numbers exist when 1/2n(5n-3)=m(2m-1). (1) Completing the square and rearranging ...
A number which is simultaneously a heptagonal number H_n and pentagonal number P_m. Such numbers exist when 1/2n(5n-3)=1/2m(3m-1). (1) Completing the square and rearranging ...
A number which is simultaneously a heptagonal number H_n and square number S_m. Such numbers exist when 1/2n(5n-3)=m^2. (1) Completing the square and rearranging gives ...
A number which is simultaneously a heptagonal number H_n and triangular number T_m. Such numbers exist when 1/2n(5n-3)=1/2m(m+1). (1) Completing the square and rearranging ...
A number which is simultaneously pentagonal and hexagonal. Let P_n denote the nth pentagonal number and H_m the mth hexagonal number, then a number which is both pentagonal ...
Let H_n denote the nth hexagonal number and S_m the mth square number, then a number which is both hexagonal and square satisfies the equation H_n=S_m, or n(2n-1)=m^2. (1) ...
A number which is simultaneously a nonagonal number N_m and heptagonal number Hep_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=1/2n(5n-4). (1) Completing the ...
A number which is simultaneously a nonagonal number N_m and hexagonal number Hex_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=n(2n-1). (1) Completing the ...
A number which is simultaneously a nonagonal number N_m and octagonal number O_n and therefore satisfies the Diophantine equation 1/2m(7m-5)=n(3n-2). (1) Completing the ...
...