Search Results for ""
681 - 690 of 1388 for matrix multiplicationSearch Results
C_2×C_4 is one of the three Abelian groups of group order 8 (the other two being non-Abelian). Examples include the modulo multiplication groups M_(15), M_(16), M_(20), and ...
A fractional ideal is a generalization of an ideal in a ring R. Instead, a fractional ideal is contained in the number field F, but has the property that there is an element ...
The group algebra K[G], where K is a field and G a group with the operation *, is the set of all linear combinations of finitely many elements of G with coefficients in K, ...
A cycle of a finite group G is a minimal set of elements {A^0,A^1,...,A^n} such that A^0=A^n=I, where I is the identity element. A diagram of a group showing every cycle in ...
Let A={a_1,a_2,...} be a free Abelian semigroup, where a_1 is the identity element, and let mu(n) be the Möbius function. Define mu(a_n) on the elements of the semigroup ...
Let A be a normed (Banach) algebra. An algebraic left A-module X is said to be a normed (Banach) left A-module if X is a normed (Banach) space and the outer multiplication is ...
The Pippenger product is an unexpected Wallis-like formula for e given by e/2=(2/1)^(1/2)(2/34/3)^(1/4)(4/56/56/78/7)^(1/8)... (1) (OEIS A084148 and A084149; Pippenger 1980). ...
The reciprocal of a real or complex number z!=0 is its multiplicative inverse 1/z=z^(-1), i.e., z to the power -1. The reciprocal of zero is undefined. A plot of the ...
The residue classes of a function f(x) mod n are all possible values of the residue f(x) (mod n). For example, the residue classes of x^2 (mod 6) are {0,1,3,4}, since 0^2=0 ...
An algorithm for multiplying two 32-bit integers modulo a 32-bit constant without using any intermediates larger than 32 bits. It is also useful in certain types of random ...
...