Search Results for ""
741 - 750 of 5881 for math 0Search Results
The line R[s]=1/2 in the complex plane on which the Riemann hypothesis asserts that all nontrivial (complex) Riemann zeta function zeros lie. The plot above shows the first ...
Consider an arbitrary one-dimensional map x_(n+1)=F(x_n) (1) (with implicit parameter r) at the onset of chaos. After a suitable rescaling, the Feigenbaum function ...
There are two definitions of the supersingular primes: one group-theoretic, and the other number-theoretic. Group-theoretically, let Gamma_0(N) be the modular group Gamma0, ...
Voronin (1975) proved the remarkable analytical property of the Riemann zeta function zeta(s) that, roughly speaking, any nonvanishing analytic function can be approximated ...
Schmidt (1993) proposed the problem of determining if for any integer r>=2, the sequence of numbers {c_k^((r))}_(k=1)^infty defined by the binomial sums sum_(k=0)^n(n; ...
A fiber of a map f:X->Y is the preimage of an element y in Y. That is, f^(-1)(y)={x in X:f(x)=y}. For instance, let X and Y be the complex numbers C. When f(z)=z^2, every ...
If X is a locally compact T2-space, then the set C_ degrees(X) of all continuous complex valued functions on X vanishing at infinity (i.e., for each epsilon>0, the set {x in ...
Let U subset= C be an open set and f a real-valued continuous function on U. Suppose that for each closed disk D^_(P,r) subset= U and every real-valued harmonic function h ...
A formula for the Bell polynomial and Bell numbers. The general formula states that B_n(x)=e^(-x)sum_(k=0)^infty(k^n)/(k!)x^k, (1) where B_n(x) is a Bell polynomial (Roman ...
An algorithm which can be used to find integer relations between real numbers x_1, ..., x_n such that a_1x_1+a_2x_2+...+a_nx_n=0, with not all a_i=0. Although the algorithm ...
...
View search results from all Wolfram sites (491119 matches)

