Search Results for ""
2451 - 2460 of 5881 for math 0Search Results
Consider a Lucas sequence with P>0 and Q=+/-1. A Fibonacci pseudoprime is a composite number n such that V_n=P (mod n). There exist no even Fibonacci pseudoprimes with ...
The ring of fractions of an integral domain. The field of fractions of the ring of integers Z is the rational field Q, and the field of fractions of the polynomial ring ...
A filtration of ideals of a commutative unit ring R is a sequence of ideals ... subset= I_2 subset= I_1 subset= I_0=R, such that I_iI_j subset= I_(i+j) for all indices i,j. ...
For any sequence of integers 0<n_1<...<n_k, there is a flag manifold of type (n_1, ..., n_k) which is the collection of ordered sets of vector subspaces of R^(n_k) (V_1, ..., ...
The Fourier cosine transform of a real function is the real part of the full complex Fourier transform, F_x^((c))[f(x)](k) = R[F_x[f(x)](k)] (1) = ...
Given a semicircular hump f(x) = sqrt(L^2-(x-L)^2) (1) = sqrt((2L-x)x), (2) the Fourier coefficients are a_0 = 1/2piL (3) a_n = ((-1)^nLJ_1(npi))/n (4) b_n = 0, (5) where ...
The Fourier sine transform is the imaginary part of the full complex Fourier transform, F_x^((s))[f(x)](k) = I[F_x[f(x)](k)] (1) = int_(-infty)^inftysin(2pikx)f(x)dx. (2) The ...
For any nonzero lambda in C, either 1. The equation Tv-lambdav=0 has a nonzero solution v, or 2. The equation Tv-lambdav=f has a unique solution v for any function f. In the ...
Let f(x) be a monic polynomial of degree d with discriminant Delta. Then an odd integer n with (n,f(0)Delta)=1 is called a Frobenius pseudoprime with respect to f(x) if it ...
The functional derivative is a generalization of the usual derivative that arises in the calculus of variations. In a functional derivative, instead of differentiating a ...
...
View search results from all Wolfram sites (491119 matches)

