TOPICS
Search

Search Results for ""


231 - 240 of 1230 for integralSearch Results
F_x[cos(2pik_0x)](k) = int_(-infty)^inftye^(-2piikx)((e^(2piik_0x)+e^(-2piik_0x))/2)dx (1) = 1/2int_(-infty)^infty[e^(-2pii(k-k_0)x)+e^(-2pii(k+k_0)x)]dx (2) = ...
The Fourier transform of the delta function is given by F_x[delta(x-x_0)](k) = int_(-infty)^inftydelta(x-x_0)e^(-2piikx)dx (1) = e^(-2piikx_0). (2)
The Fourier transform of the Heaviside step function H(x) is given by F_x[H(x)](k) = int_(-infty)^inftye^(-2piikx)H(x)dx (1) = 1/2[delta(k)-i/(pik)], (2) where delta(k) is ...
The Fourier transform of the generalized function 1/x is given by F_x(-PV1/(pix))(k) = -1/piPVint_(-infty)^infty(e^(-2piikx))/xdx (1) = ...
F_x[1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2)](k)=e^(-2piikx_0-Gammapi|k|). This transform arises in the computation of the characteristic function of the Cauchy distribution.
Let R(x) be the ramp function, then the Fourier transform of R(x) is given by F_x[R(x)](k) = int_(-infty)^inftye^(-2piikx)R(x)dx (1) = i/(4pi)delta^'(k)-1/(4pi^2k^2), (2) ...
Let Pi(x) be the rectangle function, then the Fourier transform is F_x[Pi(x)](k)=sinc(pik), where sinc(x) is the sinc function.
F_x[sin(2pik_0x)](k) = int_(-infty)^inftye^(-2piikx)((e^(2piik_0x)-e^(-2piik_0x))/(2i))dx (1) = 1/2iint_(-infty)^infty[-e^(-2pii(k-k_0)x)+e^(-2pii(k+k_0)x)]dx (2) = ...
The interesting function defined by the definite integral G(x)=int_0^xsin(tsint)dt, illustrated above (Glasser 1990). The integral cannot be done in closed form, but has a ...
G = int_0^infty(e^(-u))/(1+u)du (1) = -eEi(-1) (2) = 0.596347362... (3) (OEIS A073003), where Ei(x) is the exponential integral. Stieltjes showed it has the continued ...
1 ... 21|22|23|24|25|26|27 ... 123 Previous Next

...