Search Results for ""
311 - 320 of 648 for infiniteSearch Results
A weak Riemannian metric on a smooth manifold M is a (0,2) tensor field g which is both a weak pseudo-Riemannian metric and positive definite. In a very precise way, the ...
Let any finite or infinite set of points having no finite limit point be prescribed, and associate with each of its points a definite positive integer as its order. Then ...
There are at least two theorems known as Weierstrass's theorem. The first states that the only hypercomplex number systems with commutative multiplication and addition are ...
x^n=sum_(k=0)^n<n; k>(x+k; n), where <n; k> is an Eulerian number and (n; k) is a binomial coefficient (Worpitzky 1883; Comtet 1974, p. 242).
A function that can be defined as a Dirichlet series, i.e., is computed as an infinite sum of powers, F(n)=sum_(k=1)^infty[f(k)]^n, where f(k) can be interpreted as the set ...
Calculus II
D_q=1/(1-q)lim_(epsilon->0)(lnI(q,epsilon))/(ln(1/epsilon),) (1) where I(q,epsilon)=sum_(i=1)^Nmu_i^q, (2) epsilon is the box size, and mu_i is the natural measure. The ...
Given a real number q>1, the series x=sum_(n=0)^inftya_nq^(-n) is called the q-expansion, or beta-expansion (Parry 1957), of the positive real number x if, for all n>=0, ...
Define the nome by q=e^(-piK^'(k)/K(k))=e^(ipitau), (1) where K(k) is the complete elliptic integral of the first kind with modulus k, K^'(k)=K(sqrt(1-k^2)) is the ...
In common usage, a cardinal number is a number used in counting (a counting number), such as 1, 2, 3, .... In formal set theory, a cardinal number (also called "the ...
...