Search Results for ""
8561 - 8570 of 13134 for index theoremSearch Results

In conical coordinates, Laplace's equation can be written ...
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in oblate spheroidal coordinates.
The scale factors are h_u=h_v=sqrt(u^2+v^2), h_theta=uv and the separation functions are f_1(u)=u, f_2(v)=v, f_3(theta)=1, given a Stäckel determinant of S=u^2+v^2. The ...
In parabolic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(u^2+v^2), h_z=1 and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving Stäckel determinant ...
In two-dimensional polar coordinates, the Helmholtz differential equation is 1/rpartial/(partialr)(r(partialF)/(partialr))+1/(r^2)(partial^2F)/(partialtheta^2)+k^2F=0. (1) ...
As shown by Morse and Feshbach (1953) and Arfken (1970), the Helmholtz differential equation is separable in prolate spheroidal coordinates.
The Helmholtz differential equation in spherical coordinates is separable. In fact, it is separable under the more general condition that k^2 is of the form ...
The hemicube, which might also be called the square hemiprism, is a simple solid that serves as an example of one of the two topological classes of convex hexahedron having 7 ...
When the elongated square pyramid with unit edge lengths (i.e., an equilateral obelisk) is truncated by a plane passing through opposite corners of its square base and the ...

...