TOPICS
Search

Search Results for ""


1611 - 1620 of 1683 for graphsSearch Results
The Laplace transform is an integral transform perhaps second only to the Fourier transform in its utility in solving physical problems. The Laplace transform is particularly ...
The scalar form of Laplace's equation is the partial differential equation del ^2psi=0, (1) where del ^2 is the Laplacian. Note that the operator del ^2 is commonly written ...
The logarithm log_bx for a base b and a number x is defined to be the inverse function of taking b to the power x, i.e., b^x. Therefore, for any x and b, x=log_b(b^x), (1) or ...
The logarithmic integral (in the "American" convention; Abramowitz and Stegun 1972; Edwards 2001, p. 26), is defined for real x as li(x) = {int_0^x(dt)/(lnt) for 0<x<1; ...
The Mathieu functions are the solutions to the Mathieu differential equation (d^2V)/(dv^2)+[a-2qcos(2v)]V=0. (1) Even solutions are denoted C(a,q,v) and odd solutions by ...
Given a Jacobi theta function, the nome is defined as q(k) = e^(piitau) (1) = e^(-piK^'(k)/K(k)) (2) = e^(-piK(sqrt(1-k^2))/K(k)) (3) (Borwein and Borwein 1987, pp. 41, 109 ...
Orthogonal polynomials are classes of polynomials {p_n(x)} defined over a range [a,b] that obey an orthogonality relation int_a^bw(x)p_m(x)p_n(x)dx=delta_(mn)c_n, (1) where ...
The parabolic cylinder functions are a class of functions sometimes called Weber functions. There are a number of slightly different definitions in use by various authors. ...
Q(n), also denoted q(n) (Abramowitz and Stegun 1972, p. 825), gives the number of ways of writing the integer n as a sum of positive integers without regard to order with the ...
Percolation, the fundamental notion at the heart of percolation theory, is a difficult idea to define precisely though it is quite easy to describe qualitatively. From the ...
1 ... 159|160|161|162|163|164|165 ... 169 Previous Next

...