TOPICS
Search

Search Results for ""


9251 - 9260 of 13134 for gas kinetic theorySearch Results
The bellows conjecture asserts that all flexible polyhedra keep a constant volume as they are flexed (Cromwell 1997). The conjecture was apparently proposed by Dennis ...
An identity in calculus of variations discovered in 1868 by Beltrami. The Euler-Lagrange differential equation is (partialf)/(partialy)-d/(dx)((partialf)/(partialy_x))=0. (1) ...
An optical illusion consisting of a spinnable top marked in black with the pattern shown above. When the wheel is spun (especially slowly), the black broken lines appear as ...
The partial differential equation u_t+u_x+uu_x-u_(xxt)=0 (Benjamin et al. 1972; Arvin and Goldstein 1985; Zwillinger 1997, p. 130). A generalized version is given by u_t-del ...
The Benney equation in 1+1 dimensions is the nonlinear partial differential equation ...
A benzenoid is a fusene that is a subgraph of the regular hexagonal lattice (i.e., a simply connected polyhex). The numbers of n-hexagon benzenoids for n=1, 2, ... are 1, 1, ...
The function ber_nu(z) is defined through the equation J_nu(ze^(3pii/4))=ber_nu(z)+ibei_nu(z), (1) where J_nu(z) is a Bessel function of the first kind, so ...
(dy)/(dx)+p(x)y=q(x)y^n. (1) Let v=y^(1-n) for n!=1. Then (dv)/(dx)=(1-n)y^(-n)(dy)/(dx). (2) Rewriting (1) gives y^(-n)(dy)/(dx) = q(x)-p(x)y^(1-n) (3) = q(x)-vp(x). (4) ...
The Bernoulli inequality states (1+x)^n>1+nx, (1) where x>-1!=0 is a real number and n>1 an integer. This inequality can be proven by taking a Maclaurin series of (1+x)^n, ...
A number defined by b_n=b_n(0), where b_n(x) is a Bernoulli polynomial of the second kind (Roman 1984, p. 294), also called Cauchy numbers of the first kind. The first few ...
1 ... 923|924|925|926|927|928|929 ... 1314 Previous Next

...