Search Results for ""
9251 - 9260 of 13134 for gas kinetic theorySearch Results
The bellows conjecture asserts that all flexible polyhedra keep a constant volume as they are flexed (Cromwell 1997). The conjecture was apparently proposed by Dennis ...
An identity in calculus of variations discovered in 1868 by Beltrami. The Euler-Lagrange differential equation is (partialf)/(partialy)-d/(dx)((partialf)/(partialy_x))=0. (1) ...
An optical illusion consisting of a spinnable top marked in black with the pattern shown above. When the wheel is spun (especially slowly), the black broken lines appear as ...
The partial differential equation u_t+u_x+uu_x-u_(xxt)=0 (Benjamin et al. 1972; Arvin and Goldstein 1985; Zwillinger 1997, p. 130). A generalized version is given by u_t-del ...
The Benney equation in 1+1 dimensions is the nonlinear partial differential equation ...
A benzenoid is a fusene that is a subgraph of the regular hexagonal lattice (i.e., a simply connected polyhex). The numbers of n-hexagon benzenoids for n=1, 2, ... are 1, 1, ...
The function ber_nu(z) is defined through the equation J_nu(ze^(3pii/4))=ber_nu(z)+ibei_nu(z), (1) where J_nu(z) is a Bessel function of the first kind, so ...
(dy)/(dx)+p(x)y=q(x)y^n. (1) Let v=y^(1-n) for n!=1. Then (dv)/(dx)=(1-n)y^(-n)(dy)/(dx). (2) Rewriting (1) gives y^(-n)(dy)/(dx) = q(x)-p(x)y^(1-n) (3) = q(x)-vp(x). (4) ...
The Bernoulli inequality states (1+x)^n>1+nx, (1) where x>-1!=0 is a real number and n>1 an integer. This inequality can be proven by taking a Maclaurin series of (1+x)^n, ...
A number defined by b_n=b_n(0), where b_n(x) is a Bernoulli polynomial of the second kind (Roman 1984, p. 294), also called Cauchy numbers of the first kind. The first few ...
...
View search results from all Wolfram sites (26104 matches)

