Search Results for ""
9171 - 9180 of 13134 for gas kinetic theorySearch Results
![](/common/images/search/spacer.gif)
The ampersand curve is the name given by Cundy and Rowlett (1989, p. 72) to the quartic curve with implicit equation (y^2-x^2)(x-1)(2x-3)=4(x^2+y^2-2x)^2. (1) Although it is ...
Let M^n be a compact n-dimensional oriented Riemannian manifold without boundary, let O be a group representation of pi_1(M) by orthogonal matrices, and let E(O) be the ...
A technique used by André (1887) to provide an elegant solution to the ballot problem (Hilton and Pederson 1991) and in study of Wiener processes (Doob 1953; Papoulis 1984, ...
The Andrews-Schur identity states sum_(k=0)^nq^(k^2+ak)[2n-k+a; k]_q =sum_(k=-infty)^inftyq^(10k^2+(4a-1)k)[2n+2a+2; n-5k]_q([10k+2a+2]_q)/([2n+2a+2]_q) (1) where [n; m]_q is ...
The second-order ordinary differential equation y^('')+(y^')/x+(1-(nu^2)/(x^2))y=(x-nu)/(pix^2)sin(pinu) whose solutions are Anger functions.
Given a point P and a line AB, draw the perpendicular through P and call it PC. Let PD be any other line from P which meets CB in D. In a hyperbolic geometry, as D moves off ...
The region lying between two concentric circles. The area of the annulus formed by two circles of radii a and b (with a>b) is A_(annulus)=pi(a^2-b^2). The annulus is ...
An Anosov diffeomorphism is a C^1 diffeomorphism phi of a manifold M to itself such that the tangent bundle of M is hyperbolic with respect to phi. Very few classes of Anosov ...
A flow defined analogously to the Anosov diffeomorphism, except that instead of splitting the tangent bundle into two invariant sub-bundles, they are split into three (one ...
Because even high-resolution computer monitors have a relatively small number of pixels, when graphics or text display distinguish between individual pixels. The result is ...
![](/common/images/search/spacer.gif)
...