Search Results for ""
261 - 270 of 782 for fractional Hall quantum effectSearch Results
In the fields of functional and harmonic analysis, the Littlewood-Paley decomposition is a particular way of decomposing the phase plane which takes a single function and ...
Take K a number field and L an Abelian extension, then form a prime divisor m that is divided by all ramified primes of the extension L/K. Now define a map phi_(L/K) from the ...
The Fermat quotient for a number a and a prime base p is defined as q_p(a)=(a^(p-1)-1)/p. (1) If pab, then q_p(ab) = q_p(a)+q_p(b) (2) q_p(p+/-1) = ∓1 (3) (mod p), where the ...
A finitely generated discontinuous group of linear fractional transformations z->(az+b)/(cz+d) acting on a domain in the complex plane. The Apollonian gasket corresponds to a ...
The sawtooth wave, called the "castle rim function" by Trott (2004, p. 228), is the periodic function given by S(x)=Afrac(x/T+phi), (1) where frac(x) is the fractional part ...
One of the numbers 1, 2, 3, ... (OEIS A000027), also called the counting numbers or natural numbers. 0 is sometimes included in the list of "whole" numbers (Bourbaki 1968, ...
A prime p is called a Wolstenholme prime if the central binomial coefficient (2p; p)=2 (mod p^4), (1) or equivalently if B_(p-3)=0 (mod p), (2) where B_n is the nth Bernoulli ...
The Church-Turing thesis (formerly commonly known simply as Church's thesis) says that any real-world computation can be translated into an equivalent computation involving a ...
An antilinear operator A^~ satisfies the following two properties: A^~[f_1(x)+f_2(x)] = A^~f_1(x)+A^~f_2(x) (1) A^~cf(x) = c^_A^~f(x), (2) where c^_ is the complex conjugate ...
An operator A^~ is said to be antiunitary if it satisfies: <A^~f_1|A^~f_2> = <f_1|f_2>^_ (1) A^~[f_1(x)+f_2(x)] = A^~f_1(x)+A^~f_2(x) (2) A^~cf(x) = c^_A^~f(x), (3) where ...
...