TOPICS
Search

Antiunitary


An operator A^~ is said to be antiunitary if it satisfies:

<A^~f_1|A^~f_2>=<f_1|f_2>^_
(1)
A^~[f_1(x)+f_2(x)]=A^~f_1(x)+A^~f_2(x)
(2)
A^~cf(x)=c^_A^~f(x),
(3)

where <f|g> is the inner product and c^_ is the complex conjugate of c.


See also

Antilinear, Unitary

Explore with Wolfram|Alpha

References

Sakurai, J. J. Modern Quantum Mechanics. Menlo Park, CA: Benjamin/Cummings, 1985.

Referenced on Wolfram|Alpha

Antiunitary

Cite this as:

Weisstein, Eric W. "Antiunitary." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Antiunitary.html

Subject classifications