Search Results for ""
6921 - 6930 of 13131 for eulerstotienttheorem.htmlSearch Results

The logarithmic spiral is a spiral whose polar equation is given by r=ae^(btheta), (1) where r is the distance from the origin, theta is the angle from the x-axis, and a and ...
The catacaustic of a logarithmic spiral, where the origin is taken as the radiant point, is another logarithmic spiral. For an original spiral with parametric equations x = ...
For a logarithmic spiral given parametrically as x = ae^(bt)cost (1) y = ae^(bt)sint, (2) evolute is given by x_e = -abe^(bt)sint (3) y_e = abe^(bt)cost. (4) As first shown ...
The inverse curve of the logarithmic spiral r=e^(atheta) with inversion center at the origin and inversion radius k is the logarithmic spiral r=ke^(-atheta).
For a logarithmic spiral with parametric equations x = e^(bt)cost (1) y = e^(bt)sint, (2) the involute is given by x = (e^(bt)sint)/b (3) y = -(e^(bt)cost)/b, (4) which is ...
The pedal curve of a logarithmic spiral with parametric equation f = e^(at)cost (1) g = e^(at)sint (2) for a pedal point at the pole is an identical logarithmic spiral x = ...
The radial curve of the logarithmic spiral is another logarithmic spiral.
The inverse transform sum_(n=1)^infty(a_nx^n)/(n!)=ln(1+sum_(n=1)^infty(b_nx^n)/(n!)) of the exponential transform ...
A function f(x) is logarithmically concave on the interval [a,b] if f>0 and lnf(x) is concave on [a,b]. The definition can also be extended to R^k->(0,infty) functions ...
A polynomial is called logarithmically concave (or log-concave) if the sequence of its coefficients is logarithmically concave. If P(x) is log-convex and Q(x) is unimodal, ...

...