TOPICS
Search

Search Results for ""


61 - 70 of 791 for euler mascheroniSearch Results
Consider the Euler product zeta(s)=product_(k=1)^infty1/(1-1/(p_k^s)), (1) where zeta(s) is the Riemann zeta function and p_k is the kth prime. zeta(1)=infty, but taking the ...
There are (at least) two mathematical objects known as Weierstrass forms. The first is a general form into which an elliptic curve over any field K can be transformed, given ...
Porter's constant is the constant appearing in formulas for the efficiency of the Euclidean algorithm, C = (6ln2)/(pi^2)[3ln2+4gamma-(24)/(pi^2)zeta^'(2)-2]-1/2 (1) = ...
Hadjicostas's formula is a generalization of the unit square double integral gamma=int_0^1int_0^1(x-1)/((1-xy)ln(xy))dxdy (1) (Sondow 2003, 2005; Borwein et al. 2004, p. 49), ...
A logarithmic singularity is a singularity of an analytic function whose main z-dependent term is of order O(lnz). An example is the singularity of the Bessel function of the ...
The two-argument Ramanujan function is defined by phi(a,n) = 1+2sum_(k=1)^(n)1/((ak)^3-ak) (1) = 1-1/a(H_(-1/a)+H_(1/a)+2H_n-H_(n-1/a)-H_(n+1/a)). (2) The one-argument ...
The Hadamard product is a representation for the Riemann zeta function zeta(s) as a product over its nontrivial zeros rho, ...
The Mertens constant B_1, also known as the Hadamard-de la Vallee-Poussin constant, prime reciprocal constant (Bach and Shallit 1996, p. 234), or Kronecker's constant ...
A harmonic number is a number of the form H_n=sum_(k=1)^n1/k (1) arising from truncation of the harmonic series. A harmonic number can be expressed analytically as ...
The hyperbolic cosine integral, often called the "Chi function" for short, is defined by Chi(z)=gamma+lnz+int_0^z(cosht-1)/tdt, (1) where gamma is the Euler-Mascheroni ...
1 ... 4|5|6|7|8|9|10 ... 80 Previous Next

...