Search Results for ""
1311 - 1320 of 3354 for dirichlet functionSearch Results
The alternating factorial is defined as the sum of consecutive factorials with alternating signs, a(n)=sum_(k=1)^n(-1)^(n-k)k!. (1) They can be given in closed form as ...
Given a function f(x) of a variable x tabulated at m values y_1=f(x_1), ..., y_m=f(x_m), assume the function is of known analytic form depending on n parameters ...
Plouffe's constants are numbers arising in summations of series related to r_n=f(2^n) where f is a trigonometric function. Define the Iverson bracket function rho(x)={1 for ...
A power series in a variable z is an infinite sum of the form sum_(i=0)^inftya_iz^i, where a_i are integers, real numbers, complex numbers, or any other quantities of a given ...
Let f(x) be a real entire function of the form f(x)=sum_(k=0)^inftygamma_k(x^k)/(k!), (1) where the gamma_ks are positive and satisfy Turán's inequalities ...
The two integrals involving Bessel functions of the first kind given by (alpha^2-beta^2)intxJ_n(alphax)J_n(betax)dx ...
The ordinary differential equation y^('')+r/zy^'=(Az^m+s/(z^2))y. (1) It has solution y=c_1I_(-nu)((2sqrt(A)z^(m/2+1))/(m+2))z^((1-r)/2) ...
Let a function h:U->R be continuous on an open set U subset= C. Then h is said to have the epsilon_(z_0)-property if, for each z_0 in U, there exists an epsilon_(z_0)>0 such ...
sum_(k=0)^(infty)[((m)_k)/(k!)]^3 = 1+(m/1)^3+[(m(m+1))/(1·2)]^3+... (1) = (Gamma(1-3/2m))/([Gamma(1-1/2m)]^3)cos(1/2mpi), (2) where (m)_k is a Pochhammer symbol and Gamma(z) ...
It is possible to construct simple functions which produce growing patterns. For example, the Baxter-Hickerson function f(n)=1/3(2·10^(5n)-10^(4n)+2·10^(3n)+10^(2n)+10^n+1) ...
...