TOPICS
Search

Search Results for ""


1 - 10 of 174 for diophantineSearch Results
Characterized by allowing only integer values.
A set S of positive integers is said to be Diophantine iff there exists a polynomial Q with integral coefficients in m>=1 indeterminates such that ...
A Diophantine equation is an equation in which only integer solutions are allowed. Hilbert's 10th problem asked if an algorithm existed for determining whether an arbitrary ...
Find consecutive powers, i.e., solutions to x^p-y^q=+/-1, excluding 0 and 1. Catalan's conjecture states that the only solution is 3^2-2^3=1, so 8 and 9 (2^3 and 3^2) are the ...
k+2 is prime iff the 14 Diophantine equations in 26 variables wz+h+j-q=0 (1) (gk+2g+k+1)(h+j)+h-z=0 (2) 16(k+1)^3(k+2)(n+1)^2+1-f^2=0 (3) 2n+p+q+z-e=0 (4) ...
The 2-1 equation A^n+B^n=C^n (1) is a special case of Fermat's last theorem and so has no solutions for n>=3. Lander et al. (1967) give a table showing the smallest n for ...
A general quadratic Diophantine equation in two variables x and y is given by ax^2+cy^2=k, (1) where a, c, and k are specified (positive or negative) integers and x and y are ...
The 7.1.2 equation A^7+B^7=C^7 (1) is a special case of Fermat's last theorem with n=7, and so has no solution. No solutions to the 7.1.3, 7.1.4, 7.1.5, 7.1.6 equations are ...
The 8.1.2 equation A^8+B^8=C^8 (1) is a special case of Fermat's last theorem with n=8, and so has no solution. No 8.1.3, 8.1.4, 8.1.5, 8.1.6, or 8.1.7 solutions are known. ...
The 9.1.2 equation A^9=B^9+C^9 (1) is a special case of Fermat's last theorem with n=9, and so has no solution. No 9.1.3, 9.1.4, 9.1.5, 9.1.6, 9.1.7, 9.1.8, or 9.1.9 ...
1|2|3|4 ... 18 Next

...