Search Results for ""
4261 - 4270 of 13134 for decoherence theorySearch Results

Let theta(t) be the Riemann-Siegel function. The unique value g_n such that theta(g_n)=pin (1) where n=0, 1, ... is then known as a Gram point (Edwards 2001, pp. 125-126). An ...
The Gram series is an approximation to the prime counting function given by G(x)=1+sum_(k=1)^infty((lnx)^k)/(kk!zeta(k+1)), (1) where zeta(z) is the Riemann zeta function ...
Let a tree S be a subgraph of a cubic graph G. The graph excision G circleminus S is the graph resulting from removing the tree, then merging the edges. For example, if in ...
The graph tensor product, also called the graph cardinal product (Imrich 1998), graph categorical product, graph conjunction, graph direct product (Hammack et al. 2016), ...
The Gregory series is a pi formula found by Gregory and Leibniz and obtained by plugging x=1 into the Leibniz series, pi/4=sum_(k=1)^infty((-1)^(k+1))/(2k-1)=1-1/3+1/5-... ...
Define the sequence a_0=1, a_1=x, and a_n=(a_(n-2))/(1+a_(n-1)) (1) for n>=0. The first few values are a_2 = 1/(1+x) (2) a_3 = (x(1+x))/(2+x) (3) a_4 = ...
The determination of whether a Turing machine will come to a halt given a particular input program. The halting problem is solvable for machines with less than four states. ...
Any real function u(x,y) with continuous second partial derivatives which satisfies Laplace's equation, del ^2u(x,y)=0, (1) is called a harmonic function. Harmonic functions ...
The base 16 notational system for representing real numbers. The digits used to represent numbers using hexadecimal notation are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, ...
There are a number of formulas variously known as Hurwitz's formula. The first is zeta(1-s,a)=(Gamma(s))/((2pi)^s)[e^(-piis/2)F(a,s)+e^(piis/2)F(-a,s)], where zeta(z,a) is a ...

...