TOPICS
Search

Search Results for ""


51 - 60 of 426 for damped harmonic motionSearch Results
A tensor defined in terms of the tensors which satisfy the double contraction relation.
Like the entire harmonic series, the harmonic series sum_(k=1)^infty1/(p_k)=infty (1) taken over all primes p_k also diverges, as first shown by Euler in 1737 (Nagell 1951, ...
The first solution to Lamé's differential equation, denoted E_n^m(x) for m=1, ..., 2n+1. They are also called Lamé functions. The product of two ellipsoidal harmonics of the ...
The Leibniz harmonic triangle is the number triangle given by 1/11/2 1/21/3 1/6 1/31/4 1/(12) 1/(12) 1/41/5 1/(20) 1/(30) 1/(20) 1/5 (1) (OEIS A003506), where each fraction ...
If a function phi is harmonic in a sphere, then the value of phi at the center of the sphere is the arithmetic mean of its value on the surface.
The spherical harmonics can be generalized to vector spherical harmonics by looking for a scalar function psi and a constant vector c such that M = del x(cpsi) (1) = psi(del ...
A formula also known as the Legendre addition theorem which is derived by finding Green's functions for the spherical harmonic expansion and equating them to the generating ...
In three dimensions, the spherical harmonic differential equation is given by ...
Ellipsoidal harmonics of the second kind, also known as Lamé functions of the second kind, are variously defined as F_m^p(x)=(2m+1)E_m^p(x) ...
The sum of the absolute squares of the spherical harmonics Y_l^m(theta,phi) over all values of m is sum_(m=-l)^l|Y_l^m(theta,phi)|^2=(2l+1)/(4pi). (1) The double sum over m ...
1 ... 3|4|5|6|7|8|9 ... 43 Previous Next

...