TOPICS
Search

Search Results for ""


91 - 100 of 1059 for curves geometrical Search Results
The involute of an ellipse specified parametrically by x = acost (1) y = bsint (2) is given by the parametric equations x_i = ...
The evolute of the epicycloid x = (a+b)cost-bcos[((a+b)/b)t] (1) y = (a+b)sint-bsin[((a+b)/b)t] (2) is another epicycloid given by x = a/(a+2b){(a+b)cost+bcos[((a+b)/b)t]} ...
The involute of the epicycloid x = (a+b)cost-bcos[((a+b)/b)t] (1) y = (a+b)sint-bsin[((a+b)/b)t] (2) is another epicycloid given by x = (a+2b)/a{(a+b)cost+bcos[((a+b)/b)t]} ...
The inverse curve of the epispiral r=asec(ntheta) with inversion center at the origin and inversion radius k is the rose curve r=(kcos(ntheta))/a.
The parametric equations of the evolute of an epitrochoid specified by circle radii a and b with offset h are x = ...
The evolute of a hyperbola with parametric equations x = acosht (1) y = bsinht (2) is x_e = ((a^2+b^2))/acosh^3t (3) y_e = -((a^2+b^2))/bsinh^3t, (4) which is similar to a ...
Taking the pole as the inversion center, the hyperbolic spiral inverts to Archimedes' spiral r=atheta.
For x(0)=a, x = a/(a-2b)[(a-b)cosphi-bcos((a-b)/bphi)] (1) y = a/(a-2b)[(a-b)sinphi+bsin((a-b)/bphi)]. (2) If a/b=n, then x = 1/(n-2)[(n-1)cosphi-cos[(n-1)phi]a (3) y = ...
The hypocycloid x = a/(a-2b)[(a-b)cosphi-bcos((a-b)/bphi)] (1) y = a/(a-2b)[(a-b)sinphi+bsin((a-b)/bphi)] (2) has involute x = (a-2b)/a[(a-b)cosphi+bcos((a-b)/bphi)] (3) y = ...
The evolute of a hypotrochoid is a complicated equation. Examples are illustrated above.
1 ... 7|8|9|10|11|12|13 ... 106 Previous Next

...