Search Results for ""
101 - 110 of 1059 for curves geometrical Search Results
![](/common/images/search/spacer.gif)
The Kampyle of Eudoxus is a curve studied by Eudoxus in relation to the classical problem of cube duplication. It is given by the polar equation r=asec^2theta, (1) and the ...
The negative pedal curve of a line specified parametrically by x = at (1) y = 0 (2) is given by x_n = 2at-x (3) y_n = ((x-at)^2)/y, (4) which is a parabola.
The inverse curve of the lituus is an Archimedean spiral with m=2, which is Fermat's spiral.
The inverse curve of the logarithmic spiral r=e^(atheta) with inversion center at the origin and inversion radius k is the logarithmic spiral r=ke^(-atheta).
The radial curve of the logarithmic spiral is another logarithmic spiral.
The evolute of the nephroid given by x = 1/2[3cost-cos(3t)] (1) y = 1/2[3sint-sin(3t)] (2) is given by x = cos^3t (3) y = 1/4[3sint+sin(3t)], (4) which is another nephroid.
The involute of the nephroid given by x = 1/2[3cost-cos(3t)] (1) y = 1/2[3sint-sin(3t)] (2) beginning at the point where the nephroid cuts the y-axis is given by x = 4cos^3t ...
Given a parabola with parametric equations x = at^2 (1) y = at, (2) the evolute is given by x_e = 1/2a(1+6t^2) (3) y_e = -4at^3. (4) Eliminating x and y gives the implicit ...
The involute of a parabola x = at^2 (1) y = at (2) is given by x_i = -(atsinh^(-1)(2t))/(2sqrt(4t^2+1)) (3) y_i = a(1/2t-(sinh^(-1)(2t))/(4sqrt(4t^2+1))). (4) Defining ...
The evolute of the prolate cycloid x = at-bsint (1) y = a-bcost (2) (with b>a) is given by x = a[t+((bcost-a)sint)/(acost-b)] (3) y = (a(a-bcost)^2)/(b(acost-b)). (4)
![](/common/images/search/spacer.gif)
...