TOPICS
Search

Search Results for ""


9951 - 9960 of 13134 for complexity theorySearch Results
Ellipsoidal harmonics of the second kind, also known as Lamé functions of the second kind, are variously defined as F_m^p(x)=(2m+1)E_m^p(x) ...
The ordinary differential equation y^('')-(a+bk^2sn^2x+qk^4sn^4x)y=0, where snx=sn(x,k) is a Jacobi elliptic function (Arscott 1981).
A cone with elliptical cross section. The parametric equations for an elliptic cone of height h, semimajor axis a, and semiminor axis b are x = a(h-u)/hcosv (1) y = ...
An elliptic cylinder is a cylinder with an elliptical cross section. The elliptic cylinder is a quadratic ruled surface. The parametric equations for the laterals sides of an ...
An elliptic fixed point of a differential equation is a fixed point for which the stability matrix has purely imaginary eigenvalues lambda_+/-=+/-iomega (for omega>0). An ...
Elliptic geometry is a non-Euclidean geometry with positive curvature which replaces the parallel postulate with the statement "through any point in the plane, there exist no ...
The first singular value k_1 of the elliptic integral of the first kind K(k), corresponding to K^'(k_1)=K(k_1), (1) is given by k_1 = 1/(sqrt(2)) (2) k_1^' = 1/(sqrt(2)). (3) ...
The third singular value k_3, corresponding to K^'(k_3)=sqrt(3)K(k_3), (1) is given by k_3=sin(pi/(12))=1/4(sqrt(6)-sqrt(2)). (2) As shown by Legendre, ...
Let 0<k^2<1. The incomplete elliptic integral of the third kind is then defined as Pi(n;phi,k) = int_0^phi(dtheta)/((1-nsin^2theta)sqrt(1-k^2sin^2theta)) (1) = ...
A quadratic surface which has elliptical cross section. The elliptic paraboloid of height h, semimajor axis a, and semiminor axis b can be specified parametrically by x = ...
1 ... 993|994|995|996|997|998|999 ... 1314 Previous Next

...